Домой / Виды макияжа / Энергия гельмгольца и гиббса. Энергия гельмгольца В состоянии равновесия энергия гельмгольца системы

Энергия гельмгольца и гиббса. Энергия гельмгольца В состоянии равновесия энергия гельмгольца системы

Свободная энергия Гиббса - это величина, показывающая изменение энергии в ходе химической реакции и дающая ответ на принципиальную возможность химической реакции; это термодинамический потенциал следующего вида:

Энергию Гиббса можно понимать как полную химическую энергию системы (кристалла, жидкости и т. д.)

Дифференциал энергии Гиббса для системы с постоянным числом частиц, выраженный в собственных переменных - через давление p и температуру T:

Для системы с переменным числом частиц этот дифференциал записывается так:

Здесь μ - химический потенциал, который можно определить как энергию, которую необходимо затратить, чтобы добавить в систему ещё одну частицу.

Свобо́днаяэне́ргияГельмго́льца (или просто свобо́дная эне́ргия ) - термодинамический потенциал, убыль которого в квазистатическом изотермическом процессе равна работе, совершённой системой над внешними телами.

Свободная энергия Гельмгольца для системы с постоянным числом частиц определяется так:

Где U - внутренняя энергия, T - абсолютная температура, S - энтропия.

Отсюда дифференциал свободной энергии равен:

Видно, что это выражение является полным дифференциалом относительно независимых переменных T и V . Поэтому часто свободную энергию Гельмгольца для равновесного состояния выражают как функцию .

Для системы с переменным числом частиц дифференциал свободной энергии Гельмгольца записывается так:

где μ - химический потенциал, а N - число частиц в системе. При этом свободная энергия Гельмгольца для равновесного состояния записывается как функция .

14. Энергия Гельмгольца и максимальная работа.

Энергия Гиббса и максимальная полезная работа.

Энергия Гиббса как термодинамический критерий реакционной способности химической системы.

Движущей силой химических процессов, протекающих при постоянных давлении и температуре, является изобарно-изотермический потенциал, называемый энергией Гиббса и обозначаемый G . Изменение энергии Гиббса в химическом процессе определяется соотношением

ΔG = ΔH –TΔS, (3.16)

где ΔG – изменение энергии Гиббса химического процесса; ΔH – изменение энтальпии химического процесса; ΔS – изменение энтропии химического процесса; Т – температура, К.

Уравнение (3.16) может быть представлено в следующем виде:

ΔH = ΔG + TΔS. (3.17)

Смысл уравнения (3.17) в том, что часть теплового эффекта реакции расходуется на совершение работы (ΔG), а часть рассеивается в окружающую среду (TΔS).

Энергия Гиббса является критерием принципиальной возможности самопроизвольного протекания реакции. Если в ходе реакции энергия Гиббса уменьшается, то процесс может протекать в данных условиях самопроизвольно:

ΔG < 0. (3.18)

Процесс в данных условиях неосуществим, если

ΔG > 0. (3.19)

Выражения (3.18) и (3.19) одновременно означают, что обратная реакция не может (3.18) или может (3.19) протекать самопроизвольно.

Реакция является обратимой, т.е. может протекать и в прямом, и в обратном направлениях, если

Уравнение (3.20) является термодинамическим условием химического равновесия.

Соотношения (3.18) –(3.20) применимы также к фазовым равновесиям, т.е. к случаям, когда в равновесии находятся две фазы (агрегатных состояния) одного и того же вещества, например лед и жидкая вода.

Любая система (например, сосуд с реакционной смесью), находясь в контакте с источником теплоты, в результате теплообмена будет принимать какое-то количество теплоты. В случае бесконечно малого необратимого процесса это количество теплоты будет равно dQ . Увеличение энтропии dS при этом будет больше, чем приведённая теплота:

dS > dQ /T ,

откуда получаем TdS > dQ

и, следовательно, dQ - TdS < 0 .

Если при этом из всех видов работы совершается только работа расширения, то в соответствии с первым началом термодинамики

dQ > dU + pdV.

dU + pdV - TdS < 0 (3.6)

Если при протекании данного процесса не происходит изменения температуры и объём сохраняется постоянным (V = const, Т = const), это выражение переходит в неравенство

(dU - TdS ) V < 0

или d (U - TS ) T, V < 0 .

Величина U - ТS = А называется изохорно-изотермическим потенциалом или свободной энергией при постоянном объёме или энергией Гельмгольца . Часто её называют также и функцией Гельмгольца.

Если же процесс проводится при постоянных давлении и температуре (р = const, Т = const), то неравенство (3.6) можно переписать так:

d (U + pV - TS ) T, p < 0

или, поскольку U + pV = H ,

d (H - TS ) T, p < 0

Величина Н - ТS = G называется изобарно-изотермическим потенциалом, или свободной энергией при постоянном давлении, или энергией Гиббса (функцией Гиббса).

Размерность СИ энергии Гиббса и энергии Гельмгольца - Дж/моль.

Таким образом, в необратимых процессах при постоянной температуре энергия Гиббса системы, как и энергия Гельмгольца убывает:

(dG ) T, p < 0 ,

( ) T, V < 0 .

Если же рассматриваемый процесс является обратимым, то в вышепри­ведённых уравнениях знаки неравенства меняются на знаки равенства:

(dG ) T, p = 0 ,

( ) T, V = 0 .

Энергия Гельмгольца и энергия Гиббса, являются термодинамическими функциями состояния, иначе называемыми термодинамическими потенциалами, так как они характеризуют работу, совершаемую системой, учитывая при этом одновременно изменение энтропии (в виде величины TDS ) и тепловой энергии (DU или соответственно).

Согласно полученным уравнениям энергия Гельмгольца (в изохорных условиях) и энергия Гиббса (в изобарных условиях) являются критерием направления самопроизвольного процесса, а также критерием достижения равновесия. А именно:

1) в самопроизвольном процессе энергия Гиббса G и энергия Гельмгольца А системы уменьшаются. Иными словами, процесс возможен, если для него соблюдается условие

DG < 0 и < 0 .

2) При равновесии в системе её G и А достигают какого-то минимального значения и дальнейшего уменьшения их не происходит:

G = min и А = min,

DG = 0 и = 0 .

Резюмируя, можно вывести уравнения, характеризующие взаимосвязь энергии Гельмгольца и энергии Гиббса с другими термодинамическими функциями:

= dU - ТdS (3.7)

dG = - ТdS (3.8)

После интегрирования уравнений (3.7) и (3.8) получаются выражения, более удобные при практических расчётах:

= DU - ТDS

DG = - ТDS, (3.9)

или для процессов, идущих при стандартных условиях:

DА о = DU о - ТDS о

DG о = DН о - ТDS о.

Отрицательное значение DG о может быть получено в случае отрицательного значения DН о или положительного значения DS о , что означает уменьшение энергии и увеличение неупорядоченности. Если значение TDS о по абсолютной величине намного меньше, чем DН о , знак DG о будет определяться знаком DН о (и наоборот).

В любом случае самопроизвольный процесс приводит к минимально возможному значению H - TS для системы при постоянных температуре и давлении.

Стандартное изменение энергии Гиббса системы в ходе химической реакции DG о r может быть рассчитано с использованием справочных значений DG о f (относящихся к образованию 1 моля данного соединения из простых веществ) по уравнениям:

DG о r = å (n i DG о f i ) прод - å (n i DG о f i ) исх

или, с учётом уравнения (3.9), по стандартным изменениям энтальпии и энтропии в ходе реакции DH о r и TDS о r :

DG о r = DH о r - TDS о r (3.10)

Стандартное изменение энергии Гельмгольца системы в ходе химической реакции DА о r требуется реже и, как правило, вычисляется по уравнению, устанавливающему взаимосвязь DА о и DG о :

DА о = DG о - DnRT ,

где Dn - изменение числа молей газообразных веществ при протекании реакции.

Максимальная работа процесса и химическое сродство

Величина энергии Гиббса и, соответственно, при постоянном объёме - энергии Гельмгольца характеризует максимальное количество работы, которое может быть получено при обратимом равновесном процессе. Так как в других процессах рассеяние энергии будет намного бóльшим, то работу, получаемую от системы в обратимом равновесном изохорном процессе, называют максимальной работой :

w max = -

При постоянном давлении часть работы будет расходоваться на расширение или сжатие системы (рDV ), поэтому в изобарных условиях та же система сможет произвести полезной работы меньше, чем w max на величину рDV . Работа, которая может быть совершена системой в обратимом равновесном изобарном процессе, называется максимальной полезной работой :

w’ max = w max - pDV

Поскольку между энергией Гиббса и энергией Гельмгольца существует соотношение DG = + pDV , можно записать

w’ max = -DG .

Максимальная и, в особенности, максимальная полезная работа химического процесса может служить мерой способности веществ вступать между собой в химическую реакцию, т. е. мерой химического сродства.

Химическое равновесие

Химическое равновесие – это термодинамическое равновесие в системе, в которой возможны прямые и обратные химические реакции.

При определенных условиях активности реагентов могут быть заменены концентрациями или парциальными давлениями. В этих случаях константа равновесия, выраженная через равновесные концентрации K c или через парциальные давления K p , принимает вид

(4.11)
(4.12)

Уравнения (4.11) и (4.12) представляют собой варианты закона действующих масс (ЗДМ) для обратимых реакций в состоянии равновесия. При постоянной температуре отношение равновесных концентраций (парциальных давлений) конечных продуктов к равновесным концентрациям (парциальным давлениям) исходных реагентов, возведенных соответственно в степени, равные их стехиометрическим коэффициентам, величина постоянная .

Для газообразных веществ K p и K c связаны соотношением K p = (RT ) Δn K c , где Δn – разность числа молей начальных и конечных газообразных реагентов.

Константа равновесия определяется при известных равновесных концентрациях реагирующих веществ или по известной ΔG ° химической реакции

Произвольную обратимую химическую реакцию можно описать уравнением вида:

aA + bB Û dD + eE

В соответствии с законом действующих массв простейшем случае скорость прямой реакции связана с концентрациями исходных веществ уравнением

v пр = k пр С А а С В b ,

а скорость обратной реакции - с концентрациями продуктов уравнением

v обр = k обр С D d С E e .

При достижении равновесия эти скорости равны друг другу:

v пр = v обр

Отношение друг к другу констант скорости прямой и обратной реакций будет равно константе равновесия :


Так как это выражение основано на учёте количества реагентов и продуктов реакции, оно является математической записью закона действующих масс для обратимых реакций .

Константа равновесия, выраженная через концентрации реагирующих веществ, называется концентрационнойи обозначается К с . Для более строгого рассмотрения следует вместо концентраций использовать термодинамические активностивеществ а = fC (где f - коэффициент активности). При этом речь идёт о так называемой термодинамической константе равновесия


При малых концентрациях, когда коэффициенты активности исходных веществ и продуктов близки к единице, К с и К а практически равны друг другу.

Константа равновесия реакции, протекающей в газовой фазе, может быть выражена через парциальные давления р веществ, участвующих в реакции:


Между К р и К с существует соотношение, которое можно вывести таким образом. Выразим парциальные давления веществ через их концентрации с помощью уравнения Менделеева - Клапейрона:

pV = nRT ,

откуда p = (n /V )RT = CRT .

Размерность констант равновесия зависит от способа выражения концентрации (давления) и стехиометрии реакции. Часто она может вызывать недоумение, например, в рассмотренном примере [моль -1 м 3 ] для К с и [Па -1 ] для К р , но в этом нет ничего неверного. При равенстве сумм стехиометрических коэффициентов продуктов и исходных веществ константа равновесия будет безразмерной.

·Стандартная энергия Гиббса реакции равна сумме стандартных энергий Гиббса продуктов реакций за вычетом суммы стандартных энергий Гиббса исходных веществ с учетом стехиометрических коэффициентов уравнения реакции.

где - стандартная энергия Гиббса реакции,

- сумма стандартных энергий Гиббса продуктов реакции,

- сумма стандартных энергий Гиббса исходных веществ,

n, n / - стехиометрические коэффициенты исходных веществ и конечных продуктов в уравнении реакции.

Стандартные значения энергии Гиббса для 1 моля вещества при Т = 298 К приведены в справочнике /5, табл.44; 6, табл.1/.

Решение :

1) Расчет энергии Гиббса.

Находим в справочнике /5, табл.44/ значения стандартных энергий Гиббса для веществ реакции:

а) продукты реакции

б) исходные вещества

Применяя уравнение (63), получим:

Вывод . Полученное значение энергии Гиббса () указывает на то, что данная реакция в закрытой системе может протекать в стандартных условиях в прямом направлении.

2) Расчет энергии Гельмгольца.

Для расчета изохорно-изотермического потенциала рассмотрим соотношение между энергией Гиббса и энергией Гельмгольца:

Если в реакции принимают участие только конденсированные фазы (твердые и жидкие вещества), то изменение объема DV равно нулю.

Если в реакции участвуют газообразные продукты, то изменением объема пренебрегать нельзя.

Рассмотрим простейший случай, когда газы, участвующие в реакции, подчиняются законам идеального газа. Тогда согласно уравнению Клапейрона-Менделеева можно записать PDV=DnRT .

Dn=n кон - n исх,

где n кон - число молей газообразных конечных продуктов;

n исх – число молей газообразных исходных веществ.

В нашем примере газообразный продукт один – углекислый газ, поэтому Dn = 0 - 1= - 1.

Вывод . Т.к. полученное в результате расчета значение DF <0, то в изохорно-изотермическом процессе в закрытой системе будет протекать самопроизвольный процесс.

· Для нахождения энергии Гиббса можно применять уравнение (56), которое дает возможность производить расчет как в стандартных условиях, так и при любой другой температуре.

Пример 2 . Вычислить энергию Гиббса и Гельмгольца при Т 1 = 298 К и Т 2 = 473 К, при постоянном давлении 1,013×10 5 Па для реакции:

Как скажется повышение температуры на направления протекания данной реакции?

Решение . Для расчета DG реакции воспользуемся уравнением (56):

где DH и DS - соответственно изменение энтальпии и энтропии реакции при заданной температуре:

а) Т =298 К.

Определяем изменение стандартной энтальпии реакции D r H 0 (298) (расчет приведен в примере 1 раздела 1.3.3): D r H 0 (298) = -170,42 кДж.

D r S 0 (298) (расчет приведен в примере 1 раздела 1.5.4): D r S 0 (298) = -133,77 Дж.

Вывод . Расчет стандартной энергии Гиббса по справочным данным, приведенный в предыдущем примере, и расчет по уравнению (56), приведенный в данном примере, практически совпадают. Относительная ошибка составляет:

Расчет DF (298) см. в этом же разделе, пример 1.

б) Т = 473 К.

Определяем изменение энтальпии реакции D r H (473) (расчет приведен в примере 2 раздела 1.4.2):

D r H (473) = -125,79 кДж.

Определяем изменение энтропии реакции D r S (473) (расчет приведен в примере 1 раздела 1.5.4):

D r S (473) = -12,9 Дж.

Подставим полученные данные в уравнение (56):

Расчет DF проводим согласно уравнению (64):

Вывод . Ответ на последний вопрос задачи определяется знаком D r S и D r H (см. табл. 1). В нашем случае , т.е. в уравнении член (- TDS) для нашей реакции положителен. Следовательно, с повышением температуры Т в изобарно-изотермическом процессе значение D r G будет возрастать (т.е. становиться менее отрицательным). Это означает, что повышение температуры будет препятствовать протеканию рассматриваемой реакции в прямом направлении.

В изохорно-изотермическом процессе будут наблюдаться аналогичные тенденции для энергии Гельмгольца.

Преобразуем данное уравнение и проинтегрируем:

Если Т 1 = 298 К, то уравнение примет вид:

В зависимости от степени точности возможны три варианта расчета энергии Гиббса по этому способу.

Первый вариант . Предположим, что энтропия реакции не зависит от температуры, т.е. D r S 0 (298) = D r S (Т 2), тогда:

Полученный результат расчета дает существенную погрешность.

Пример 3 . Вычислить энергию Гиббса предложенным способом для реакции:

При Т 2 = 473 К, при постоянном давлении 1,013×10 5 Па.



Решение.

Стандартную энергию Гиббса находим по уравнению (63) (см. пример 1 в разделе 1.5.8.): D r G 0 (298) = -130,48 кДж.

Определяем изменение стандартной энтропии реакции D r S 0 (298) (расчет приведен в примере 1 раздела 1.5.4): D r S 0 (298) = -133,77 Дж.

Подставим полученные данные в уравнение (66) и произведем расчет: .

Вывод . Результат расчета отличается от результата в примере 2,б раздела 1.5.8, т.к. последний вариант является приближенным, не учитывается фазовый переход воды.

Второй вариант. Предположим, что энтропия реакции зависит от температуры

Если теплоемкость не зависит от температуры D r С Р = const , то после интегрирования имеем:

Подставим полученное значение D r S (Т )в (65):

После интегрирования получим:

учитывая зависимость энтропии реакции от температуры.

Решение.

Определяем D r С Р реакции по первому следствию закона Гесса:

Воспользуемся значениями стандартных изобарных теплоемкостей для индивидуальных веществ, приведенных в справочнике /5, табл. 44/:

а) продукты реакции:

б) исходные вещества:

Расчет стандартной энергии Гиббса для данной реакции приведен в примере 1 раздела 1.5.8. D r G 0 (298) = -130,48 кДж.

Расчет стандартной энтропии для данной реакции приведен в примере 1 раздела 1.5.4. D r S 0 (298) = -133,77 Дж.

Подставляя полученные значения в (67), получим:

Вывод: данный расчет также является приближенным, т.е. он не учитывает зависимость теплоемкости от температуры, но более точным, чем первый способ, рассмотренный выше.

Пример, рассматриваемый нами, является более сложным, т.к. в предложенном интервале температур у одного из веществ, а именно у воды, существует фазовый переход, что необходимо учитывать. Это усложняет расчет и делает его громоздким.

В таких случаях вычислить энергию Гиббса можно, воспользовавшись формулой (56). Расчет этот приведен в примере 2 раздела 1.5.8.

На практике часто для расчета энергии Гиббса используют метод Темкина - Шварцмана (1946 г.), позволяющий стандартную энергию Гиббса при 298 К пересчитать для любой температуры /1, 4, 7, 8/.

Пример 5. Вычислить изменение энергии Гиббса при изотермическом сжатии 0,005 м 3 кислорода от Р 1 =0,1013×10 5 Па до Р 2 =1,013×10 5 Па (Т = 0 0 С ), считая кислород идеальным газом.

Решение. Из уравнение Менделеева-Клапейрона находим число молей кислорода, участвующих в реакции:

Для определения DG воспользуемся формулой (58):

Т.к. процесс протекает при Т= const, то второе слагаемое будет равно нулю. Расчет проводим по формуле dG = VdP.

Из уравнения Менделеева-Клапейрона выразим V:

Подставляем:

Интегрируем и подставляем данные задачи:

Вывод. При изотермическом сжатии кислорода процесс не может протекать самопроизвольно.

Пример 6. Теплота плавления льда при 0 0 С равна 335 Дж/г. Удельная теплоемкость воды равна . Удельная теплоемкость льда равна . Найти DG, DH, DS для процесса превращения 1 моль переохлажденной воды при – 5 0 С в лед.

Решение. Переохлажденная жидкость не находится в состоянии равновесия с твердой фазой. Рассматриваемый процесс не является статическим, поэтому вычислить энтальпию и энтропию по теплоте кристаллизации для переохлажденной жидкости нельзя.

Для вычисления данных функций мысленно заменим нестатический процесс тремя квазистатическими, в результате которых система придет из начального состояния в конечное.

1-й процесс. Нагревание обратимым путем 1 моль воды до температуры замерзания. При этом изменение энтальпии и энтропии согласно уравнениям (26) и (36):

где С Р – молярная теплоемкость воды,

Подставляя в формулы данные задачи, получим:

; view: 8987 ;

Все реальные системы неизолированные; подавляющее большинство из них, являются открытыми. Для подобных систем только с помощью энтропии нельзя охарактеризовать направление процесса. В связи с этим вводятся еще две термодинамические функции состояния - энергия Гиббса и энергия Гельмгольца, с их помощью появляется возможность определить условия самопроизвольных и равновесных процессов в изолированных системах.

Энергия Гиббса и энергия Гельмгольца

Для определения направления процесса в неизолированных системах необходимо рассматривать не только систему, но и среду, окружающую эту систему.

Энтропию как термодинамическую функцию состояния можно связать с теплотой обратимого процесса. Если бесконечно малое кол-во энергии δq предается системе обратимым способом в виде теплоты при температуре Т , в этом случае энтропия изменяется как:

δS≥ δq обр /Т (*) (где знак больше-самопроизвольный процесс, равно - равновесное состояние системы)

Используя это состношение, рассмотрим случай, когда система отдает теплоту окружающей среде (система в этом случае закрытая) при постоянном объеме. Тогда на основании равенства δq=dU (в изохорно-изотермических процессах теплота процесса равна изменению внутренней энергии) δq можно отождествлять с dU Замена δq на dU в уравнении (*) приводит к следующим результатам:

В случае потери теплоты при постоянном давлении с учетом равенства δq=dН (в изобарно-изотермических процессах теплота процесса равна изменению энтальпии) из уравнения (*) получим

Условия (4.1) и (4.2) позволяют ввести две новые термодинамические функции состояния - энергию Гельмгольца А*(ранее обозначали как F) и энергию Гиббса G, которые определяются следующим образом:

|Уравнения (4.3) и (4.4) связывают между собой пять характеристических функций состояния и дают возможность рассматривать особенности равновесных (если d А = 0 или dG =0 ) и самопроизвольных (когда d А < 0 или dG < 0 ) процессов. |Поясним смысл уравнений (4.3) и (4.4) и правых частей этих равнений при помощи рисунка.

Неизолированная система, обладающая свойствами идеального газа, имеет начальную температуру Т, а температура окружающей среды Тс, ниже начальной температуры системы, т.е. Тс<Т. Система остывает и отдает окр. среде часть своей внутренней энергии (энтальпии) в виде d А или dG , в системе остается запас энергии, соответствующей правой части уравнения 4.3 или 4.4 Если бы температура среды была равна абсолютному нолю и оставалась таковой в течение всего процесса передачи теплоты, то система тоже должна была бы остыть до темепратуры среды,т.е. до абсолютного ноля. При этом система всю свою внутреннюю энергию сообщила бы среде. Однако температура окр. среды (Тс) больше 0.

В соответствии с одной из формулировок второго начала термодинамики (невозможен самопроизвольный переход теплоты от холодного тела к горячему) система может остыть лишь до некоторой конечной температуры Т к. В этих условиях система отдает среде только часть своей внутренней энергии, которую называют свободной энергией . В изобарно-изотермическом процессе она выступает в форме энергии Гиббса dG , а в изохорно-изотермическом - энергии Гельмгольца d А.

Энергия Гиббса (энергия Гельмгольца) - это часть внутренней энергии, которую система может отдать окружающей среде. Именно поэтому ее называют "свободной". Остальная часть внутренней энергии системы, равная теплоте ее нагрева от абсолютного нуля до Т к, остается в системе и не может быть использована вне системы, в данном случае для передачи теплоты из системы в окружающую среду. Оставшаяся часть энергии как бы "заперта" в системе, поэтому ее называют связанной энергией . Связанная энергия контролируется энтропией системы и равна произведению абсолютной температуры на изменение энтропии от абсолютного нуля до абсолютной температуры системы, т. е. TdS или TΔS, что соответствует вычитаемому правой части уравнений (4.3) и (4.4).

Итак, энергия Гиббса и энергия Гельмгольца определяют ту часть теплоты (энергии), которую система может отдать; эта часть равна суммарному запасу энергии системы за вычетом той энергии, которая остается в системе

В соответствии с уравнениями (4.3) и (4.4) энергия Гиббса и энергия Гельмгольца определяются значениями энтальпии и внутренней энергией (ΔН и ΔU), с одной стороны, и энтропии ΔS- с другой, т. е. энтальпийным и энтропийным факторами . Величина ΔН(ΔU) как энтальпийный фактор возрастает по мере агрегации частиц, т. е. отражает стремление частиц объединяться. К процессам, увеличивающим ΔН , относятся сжатие газа, конденсация пара, затвердевание жидкости, ассоциация молекул, синтез молекул из атомов и т. д. Величина ΔS как энтропийный фактор характеризует противоположную тенденцию - стремление частиц к дезинтеграции, переход от порядка к беспорядку, от меньшего беспорядка к большему. К числу процессов, увеличивающих энтропию, можно отнести расширение газа, испарение жидкости, плавление, диссоциацию молекул и др., а же смешение газов, растворение, диффузию и т. д.

Термодинамическими потенциалами, или характеристическими функциями, называют термодинамические функции, которые содержат в себе всю термодинамическую информацию о системе. Наибольшее значение имеют четыре основных термодинамических потенциала:

1) внутренняя энергия U (S ,V ),

2) энтальпия H (S ,p ) = U + pV ,

3) энергия Гельмгольца F (T ,V ) = U - TS ,

4) энергия Гиббса G (T ,p ) = H - TS = F + pV .

В скобках указаны термодинамические параметры, которые получили название естественных переменных для термодинамических потенциалов. Все эти потенциалы имеют размерность энергии и все они не имеют абсолютного значения, поскольку определены с точностью до постоянной, которая равна внутренней энергии при абсолютном нуле.

Зависимость термодинамических потенциалов от их естественных переменных описывается основным уравнением термодинамики , которое объединяет первое и второе начала. Это уравнение можно записать в четырех эквивалентных формах:

dU = TdS - pdV (5.1)

dH = TdS + Vdp (5.2)

dF = - pdV - SdT (5.3)

dG = Vdp - SdT (5.4)

Эти уравнения записаны в упрощенном виде - только для закрытых систем, в которых совершается только механическая работа.

Зная любой из четырех потенциалов как функцию естественных переменных, можно с помощью основного уравнения термодинамики найти все другие термодинамические функции и параметры системы (см. пример 5-1).

Другой важный смысл термодинамических потенциалов состоит в том, что они позволяют предсказывать направление термодинамических процессов. Так, например, если процесс происходит при постоянных температуре и давлении, то неравенство, выражающее второй закон термодинамики:

эквивалентно неравенству dG p,T 0 (мы учли, что при постоянном давлении Q p = dH ), где знак равенства относится к обратимым процессам, а неравенства - к необратимым. Таким образом, при необратимых процессах, протекающих при постоянных температуре и давлении, энергия Гиббса всегда уменьшается. Минимум энергии Гиббса достигается при равновесии.

Аналогично, любой термодинамический потенциал в необратимых процессах при постоянстве естественных переменных уменьшается и достигает минимума при равновесии:

Потенциал

Естественные
переменные

Условие само-произвольности

Условия
равновесия

S = const, V = const

dU = 0, d 2 U > 0

S = const, p = const

dH = 0, d 2 H > 0

T = const, V = const

dF = 0, d 2 F > 0

T = const, p = const

dG = 0, d 2 G > 0

Наибольшее значение в конкретных термодинамических расчетах имеют два последние потенциала - энергия Гельмгольца F и энергия Гиббса G , т.к. их естественные переменные наиболее удобны для химии. Другое (устаревшее) название этих функций - изохорно-изотермический и изобарно-изотермический потенциалы. Они имеют дополнительный физико-химический смысл. Уменьшение энергии Гельмгольца в каком-либо процессе при T = const, V = const равно максимальной механической работе, которую может совершить система в этом процессе:

F 1 - F 2 = A max (= A обр).

Таким образом, энергия F равна той части внутренней энергии (U = F + TS ), которая может превратиться в работу.

Аналогично, уменьшение энергии Гиббса в каком-либо процессе при T = const, p = const равно максимальной полезной (т.е., немеханической) работе, которую может совершить система в этом процессе:

G 1 - G 2 = A пол.

Зависимость энергии Гельмгольца (Гиббса) от объема (давления) вытекает из основного уравнения термодинамики (5.3), (5.4):

. (5.5)

Зависимость этих функций от температуры можно описать с помощью основного уравнения термодинамики:

(5.6)

или с помощью уравнения Гиббса-Гельмгольца:

(5.7)

Расчет изменения функций F и G в химических реакциях можно проводить разными способами. Рассмотрим два из них на примере энергии Гиббса.

1) По определению, G = H - TS . Если продукты реакции и исходные вещества находятся при одинаковой температуре, то стандартное изменение энергии Гиббса в химической реакции равно:

2) Аналогично тепловому эффекту реакции, изменение энергии Гиббса можно рассчитать, используя энергии Гиббса образования веществ:

В термодинамических таблицах обычно приводят абсолютные энтропии и значения термодинамических функций образования соединений из простых веществ при температуре 298 К и давлении 1 бар (стандартное состояние). Для расчета r G и r F при других условиях используют соотношения (5.5) - (5.7).

Все термодинамические потенциалы являются функциями состояния. Это свойство позволяет найти некоторые полезные соотношения между частными производными, которые называют соотношениями Максвелла .

Рассмотрим выражение (5.1) для внутренней энергии. Т.к. dU - полный дифференциал, частные производные внутренней энергии по естественным переменным равны:

Если продифференцировать первое тождество по объему, а второе - по энтропии, то получатся перекрестные вторые частные производные внутренней энергии, которые равны друг другу:

(5.10)

Три другие соотношения получаются при перекрестном дифференцировании уравнений (5.2) - (5.4).

(5.11)

(5.12)

(5.13)

ПРИМЕРЫ

Пример 5-1. Внутренняя энергия некоторой системы известна как функция энтропии и объема, U (S ,V ). Найдите температуру и теплоемкость этой системы.

Решение . Из основного уравнения термодинамики (5.1) следует, что температура - это частная производная внутренней энергии по энтропии:

Изохорная теплоемкость определяет скорость изменения энтропии с температурой:

Воспользовавшись свойствами частных производных, можно выразить производную энтропии по температуре через вторую производную внутренней энергии:

.

Пример 5-2. Используя основное уравнение термодинамики, найдите зависимость энтальпии от давления при постоянной температуре: а) для произвольной системы; б) для идеального газа.

Решение . а) Если основное уравнение в форме (5.2) поделить на dp при постоянной температуре, получим:

.

Производную энтропии по давлению можно выразить с помощью соотношения Максвелла для энергии Гиббса (5.13):

.

б) Для идеального газа V (T ) = nRT / p . Подставляя эту функцию в последнее тождество, получим:

.

Энтальпия идеального газа не зависит от давления.

Пример 5-3. Выразите производные и через другие термодинамические параметры.

Решение . Основное уравнение термодинамики (5.1) можно переписать в виде:

,

представив энтропию как функцию внутренней энергии и объема. Коэффициенты при dU и dV равны соответствующим частным производным:

.

Пример 5-4. Два моля гелия (идеальный газ, мольная теплоемкость C p = 5/2 R ) нагревают от 100 о С до 200 о С при p = 1 атм. Вычислите изменение энергии Гиббса в этом процессе, если известно значение энтропии гелия, = 131.7 Дж/(моль. К). Можно ли считать этот процесс самопроизвольным?

Решение . Изменение энергии Гиббса при нагревании от 373 до 473 К можно найти, проинтегрировав частную производную по температуре (5.6):

.

Зависимость энтропии от температуры при постоянном давлении определяется изобарной темлоемкостью:

Интегрирование этого выражения от 373 К до T дает:

Подставляя это выражение в интеграл от энтропии, находим:

Процесс нагревания не обязан быть самопроизвольным, т.к. уменьшение энергии Гиббса служит критерием самопроизвольного протекания процесса только при T = const и p = const.

Ответ. G = -26850 Дж.

Пример 5-5. Рассчитайте изменение энергии Гиббса в реакции

CO + ЅO 2 = CO 2

при температуре 500 K и парциальных давлениях 3 бар. Будет ли эта реакция самопроизвольной при данных условиях? Газы считать идеальными. Необходимые данные возьмите из справочника.

Решение . Термодинамические данные при температуре 298 К и стандартном давлении 1 бар сведем в таблицу:

Вещество

Энтальпия образования
, кДж/моль

Энтропия
, Дж/(моль. К)

Теплоемкость
, Дж/(моль. К)

КДж/моль

Дж/(моль. К)

Дж/(моль. К)

CO + ЅO 2 =
= CO 2

Примем, что C p = const. Изменения термодинамических функций в результате реакции рассчитаны как разность функций реагентов и продуктов:

f = f (CO 2) - f (CO) - Ѕ f (O 2).

Стандартный тепловой эффект реакции при 500 К можно рассчитать по уравнению Кирхгофа в интегральной форме (3.8):

Стандартное изменение энтропии в реакции при 500 К можно рассчитать по формуле (4.9):

Стандартное изменение энергии Гиббса при 500 К:

Для расчета изменения энергии Гиббса при парциальных давлениях 3 атм необходимо проинтегрировать формулу (5.5) и использовать условие идеальности газов (V = n RT / p , n - изменение числа молей газов в реакции):

Эта реакция может протекать самопроизвольно при данных условиях.

Ответ . G = -242.5 кДж/моль.

ЗАДАЧИ

5-1. Выразите внутреннюю энергию как функцию переменных G , T , p .

5-2. Используя основное уравнение термодинамики, найдите зависимость внутренней энергии от объема при постоянной температуре: а) для произвольной системы; б) для идеального газа.

5-3. Известно, что внутренняя энергия некоторого вещества не зависит от его объема. Как зависит давление вещества от температуры? Ответ обоснуйте.

5-4. Выразите производные и через другие термодинамические параметры и функции.

5-5. Напишите выражение для бесконечно малого изменения энтропии как функции внутренней энергии и объема. Найдите частные производные энтропии по этим переменным и составьте соответствующее уравнение Максвелла.

5-6. Для некоторого вещества известно уравнение состояния p (V , T ). Как изменяется теплоемкость C v с изменением объема? Решите задачу: а) в общем виде; б) для какого-либо конкретного уравнения состояния (кроме идеального газа).

5-7. Докажите тождество: .

5-8. Энергия Гельмгольца одного моля некоторого вещества записывается следующим образом:

F = a + T (b - c - b ln T - d ln V ),

где a , b , c , d - константы. Найдите давление, энтропию и теплоемкость C V этого тела. Дайте физическую интерпретацию константам a , b , d .

5-9. Нарисуйте график зависимости энергии Гиббса индивидуального вещества от температуры в интервале от 0 до T > T кип.

5-10. Для некоторой системы известна энергия Гиббса:

G(T ,p ) = aT (1-lnT ) + RT lnp - TS 0 + U 0 ,

где a , R , S 0 , U 0 - постоянные. Найдите уравнение состояния p (V ,T ) и зависимость U (V ,T ) для этой системы.

5-11. Зависимость мольной энергии Гельмгольца некоторой системы от температуры и объема имеет вид:

где a , b , c , d - константы. Выведите уравнение состояния p (V ,T ) для этой системы. Найдите зависимость внутренней энергии от объема и температуры U (V ,T ). Каков физический смысл постоянных a , b , c ?

5-12. Найдите зависимость мольной внутренней энергии от объема для термодинамической системы, которая описывается уравнением состояния (для одного моля)

,

где B (T ) - известная функция температуры.

5-13. Для некоторого вещества зависимость теплоемкости от температуры имеет вид: C V = aT 3 при температуре 0 - 10 К. Найдите зависимость энергии Гельмгольца, энтропии и внутренней энергии от температуры в этом диапазоне.

5-14. Для некоторого вещества зависимость внутренней энергии от температуры имеет вид: U = aT 4 + U 0 при температуре 0 - 10 К. Найдите зависимость энергии Гельмгольца, энтропии и теплоемкости C V от температуры в этом диапазоне.

5-15. Выведите соотношение между теплоемкостями:

.

5-16. Исходя из тождества , докажите тождество:

.

5-17. Один моль газа Ван-дер-Ваальса изотермически расширяется от объема V 1 до объема V 2 при температуре T . Найдите U , H , S , F и G для этого процесса.