Домой / Помада / Развитие альтернативной энергетики. Перспективы использования альтернативных источников энергии Развитие альтернативных источников энергии

Развитие альтернативной энергетики. Перспективы использования альтернативных источников энергии Развитие альтернативных источников энергии

Альтернативная энергетика - это нетрадиционные способы получения, передачи и использования энергии. Известна также как «зелёная» энергия». Под альтернативными источниками понимаются возобновляемые ресурсы (такие как вода, солнечный свет, ветер, энергия волн, геотермальные источники, нетрадиционное сжигание возобновляемого топлива).

Базируется на трёх принципах:

  1. Возобновляемость.
  2. Экологичность.
  3. Экономичность.

Альтернативная энергетика должна решить несколько остро стоящих в мире проблем: трата полезных ископаемых и выделение в атмосферу углекислого газа (это происходит при стандартных способах добычи энергии через газ, нефть и т.д.), что влечёт за собой глобальное потепление, необратимое изменение экологии и парниковый эффект.

Развитие альтернативной энергетики

Направление считается новым, хотя попытки использовать энергию ветра, воды и солнца предпринимались ещё в 18 веке. В 1774 году издан первый научный труд по гидротехническому строительству - «Гидравлическая архитектура». Автор работы - французский инженер Бернар Форест де Белидор. После издания труда почти на 50 лет развитие зелёного направления застыло.

  • 1846 - первая ветроустановка, проектировщик - Пол ла Кур.
  • 1861 - патент на изобретение солнечной электростанции.
  • 1881 - постройка гидроэлектростанции на Ниагарском водопаде.
  • 1913 - сооружение первой геотермальной станции, инженер - итальянец Пьеро Джинори Конти.
  • 1931 - постройка первой промышленной ветряной станции в Крыму.
  • 1957 - установка в Нидерландах мощной ветротурбины (200 кВт), подключённой к государственной сети.
  • 1966 - строительство первой станции, вырабатывающей энергию на основе волн (Франция).

Новый толчок в развитии альтернативная энергетика получила в период жёсткого кризиса 1970 годов. С 90-ых годов по начало 21 века в мире зафиксировано критическое количество аварий на электростанциях, что стало дополнительным стимулом разработки зелёной энергии.

Альтернативная энергетика в России

Доля альтернативной энергетики в нашей стране занимает примерно 1% (по данным Минэнерго). К 2020 году планируется увеличить этот показатель до 4,5%. Развитие зелёной энергии будет проводиться не только средствами Правительства. РФ привлекает частных предпринимателей, обещая небольшой возврат средств (2,5 копеек за 1 кВт в час) тем бизнесменам, которые вплотную займутся альтернативными разработками.

Потенциал развития зелёной энергии в РФ огромен:

  • океанские и морские побережья, Сахалин, Камчатка, Чукотка и др. территории ввиду малой заселённости и застроенности могут использоваться в качестве источников ветровой энергии;
  • источники солнечной энергии в совокупности превышают то количество ресурсов, которые производятся путём переработки нефти и газа, - наиболее благоприятны в этом отношении Краснодарский и Ставропольский края, Дальний Восток, Северный Кавказ и др.

(Крупнейшая солнечная электростанция на Алтае, Россия )

В последние годы финансирование этой отрасли сократилось: планка в 333 млрд рублей опустилась до 700 млн. Это объясняется мировым экономическим кризисом и наличие неотложных проблем. На данный момент альтернативная энергетика не является приоритетным направлением в промышленности России.

Альтернативная энергетика стран мира

(Ветряные генераторы в Дании )

Наиболее динамично развивается гидроэнергетика (ввиду доступности водных ресурсов). Ветровая и солнечная энергия значительно отстают, хотя некоторые страны предпочитают двигаться именнов этих направлениях.

Так, с помощью ветряных установок добывается энергии (от общего числа):

  • 28% в Дании;
  • 19% в Португалии;
  • 16% в Испании;
  • 15% в Ирландии.

Спрос на солнечную энергию ниже, чем предложение: устанавливается половина источников от того числа, которое могут обеспечить производители.

(Солнечная электростанция в Германии )

ТОП-5 лидеров по производству зелёной энергии (данные портала вести.ру):

  1. США (24,7%) - (все типы ресурсов, более всего задействован солнечный свет).
  2. Германия - 11,7% (все виды альтернативных ресурсов).
  3. Испания - 7,8% (ветряные источники).
  4. Китай - 7,6% (все типы источников, половина из них - ветряная энергетика).
  5. Бразилия - 5% (биотопливо, солнечные и ветряные источники).

(Крупнейшая солнечная электростанция в Испании )

Одна из наиболее труднорешаемых проблем - финансы. Зачастую пользоваться традиционными источниками энергии дешевле, чем устанавливать новое оборудование. Одним из потенциально позитивных решений этой задачи является резкое поднятие цен на свет, газ и т.д., чтобы вынудить людей экономить и со временем полностью перейти на альтернативные источники.

Прогнозы развития сильно варьируются. Так, Wind Energy Association обещает,ч то к 2020 году доля зелёной энергии вырастет до 12%, а EREC предполагает, что в 2030 году уже 35% энергопотребления в мире будет обеспечиваться из возобновляемых источников.

Когда говорят об альтернативной энергетике, то обычно имеют в виду установки по производству электрической энергии из возобновляемых источников – солнечного света и ветра. При этом статистика исключает , станциях, использующих силу морских и океанических приливов, а также геотермальные электростанции. Хотя, эти источники энергии также являются возобновляемыми. Однако, они традиционные, используются в промышленных масштабах уже долгие годы.

Идея использовать силу ветра и солнечную энергию для производства электроэнергии достаточно привлекательная. Ведь это позволит отказаться от использования топлива. Даже привычный пейзаж должен будет измениться. Исчезнут трубы тепловых электростанций, саркофаги атомных. Многие страны перестанут находится в постоянной зависимости от закупок ископаемого топлива. Ведь солнце и ветер есть на Земле повсюду.

Но сможет ли такая энергетика вытеснить традиционную? Оптимисты считают, что так и произойдет. У пессимистов другой взгляд на проблему.


Всемирная статистика показывает, что рост инвестиций в альтернативную энергетику, начиная с 2012 года снижается . Наблюдается даже спад в абсолютных цифрах. Снижение в мировом масштабе произошло в основном за счет Соединенных Штатов Америки, стран Западной Европы. Его не смог даже компенсировать рост японских и китайских инвестиций.

Возможно, статистика несколько искаженная, ведь практически, не поддаются учету точечные производители альтернативной энергетики – отдельные солнечные батареи на крышах жилых домов, ветровые установки, обслуживающие отдельные фермерские хозяйства. А на них по оценкам экспертов приходится около трети всей альтернативной энергетики.

Германия справедливо считается лидером в производстве электричества из возобновляемых источников. Во многом ее энергетика является своеобразным полигоном для выработки перспективных моделей. Установленная мощность ее ветровой и солнечной генерации составляет 80 ГВт. 40 процентов мощностей принадлежит частным лицам, около 10 – фермерам. И только половина – компаниям и государству.

Примерно каждый двенадцатый гражданин Германии является собственником альтернативной энергетической установки. Примерно такие же цифры характеризуют Италию с Испанией. Солнечные энергоустановки подключены к общей сети, таким образом их владельцы одновременно производят и потребляют электроэнергию.


В прежние годы получать альтернативную энергию потребители могли лишь в солнечную погоду, но в настоящее время активно расширяется использование целых комплексов, в которых солнечные батареи дополнены аккумуляторами – традиционными свинцовыми или современными литиевыми. Таким образом появляется возможность накапливать избыточную энергию, чтобы потом ее использовать в темное время суток или же при плохой погоде.

Специалисты оценивают, что подобная связка, позволяет среднестатистической европейской семье, а это четыре человека, сэкономить 60 процентов потребляемой электроэнергии. Тридцатипроцентную экономию дадут непосредственно солнечные батареи, а еще тридцать аккумуляторы.

Экономия значительная, но вот стоимость такой энергии очень высока. Аккумуляторная батарея на шесть КВтч в среднем имеет стоимость 5 000 евро. Если прибавить стоимость установки, обслуживания, выплату налогов и другие расходы, то установка на шесть КВтч обойдется от десяти до двадцати тысяч евро. Теперь же в Германии действует тариф на электричество около 25 центов. Поэтому срок окупаемости альтернативной установки для одной семьи составит около тридцати лет.

Понятно, что ни один аккумулятор не прослужит так долго. Но это справедливо лишь для сегодняшних технологий. По мнению специалистов, стоимость, как аккумуляторных батарей, так и солнечных панелей будет снижаться, а тарифы на электроэнергию увеличиваться. Такой видят перспективы владельцы многих компаний, в частности Google. Именно эта компания является лидером по инвестициям в развитие альтернативной энергетики в США. Чтобы подчеркнуть это обстоятельство, на стоянке у ее центрального офиса установлены солнечные батареи.


В Западной Европе некоторые металлургические заводы и производители цемента заявляют, что в ближайшем будущем готовы к тому, чтобы частично использовать энергию солнечных батарей.

Ряд экспертов предрекают резкий спад спроса на традиционные виды энергоносителей и исчезновение атомной энергетики в обозримом будущем. Вероятно, к таким оценкам прислушиваются и американские энергетические компании. Так, в последние годы в США комиссия, которая регулирует атомную энергетику, не утвердила ни один из проектов АЭС.

Однако, при всех радужных перспективах альтернативная энергетика ставит вопросы, на которые пока нет четких ответов. Одна из основных проблем состоит в том, что развитие отрасли происходит в основном с колоссальной государственной поддержкой. Именно неопределенность в том, сохраниться ли такое положение в ближайшие годы, и вызвало падение интереса инвесторов в США, о котором писалось ранее. Та же картина наблюдается и в Италии, правительство которой урезало «зеленые» тарифы, чтобы сократить дефицит бюджета.


Германия производит около четверти всей электроэнергии, используя альтернативные источники, и даже экспортирует ее. Проблема состоит в том, что эта энергия имеет приоритет для поступления на рынок. А это уже дискриминирует традиционных поставщиков, ущемляет их экономические интересы. Государство дотирует производство по альтернативной технологии, но деньги для дотаций берутся за счет повышения тарифов. Примерно 20% стоимости электроэнергии для немцев – это и есть переплата.

Чем больше производится «зеленой» электроэнергии, тем сложнее выживать традиционным энергетическим компаниям. Их бизнес в Германии уже сегодня находится под угрозой. Крупные энергопроизводители, вкладываясь в альтернативную генерацию, сами попали в собственную ловушку. Большая доля «зеленой» электроэнергии уже обрушила оптовые цены.

Солнечные батареи, ветровые установки не могут выдавать энергию в пасмурные дни, при отсутствии ветра, поэтому отказаться от тепловых электростанций пока нереально, но в связи с приоритетом альтернативной электроэнергии, генерирующие мощности ТЭЦ вынуждены простаивать при солнечной погоде и в ветреные дни, а это увеличивает себестоимость их собственной генерации и сказывается на потребителях.


Рассуждая об альтернативной электроэнергии, обосновывая ее экономичность в будущем, обычно оперируют только стоимостью самих установок. Но для того, чтобы вся энергетическая система работала, и потребитель получал электроэнергию без перебоев, необходимо держать наготове традиционные мощности, которые в результате будут загружены лишь на пятую часть от своих генерирующих мощностей, а это дополнительные расходы. Плюс к этому, необходимо кардинально модернизировать электросеть, сделать ее «умной», чтобы обеспечить перетекание в ней электроэнергии на новых принципах. Все это требует многомиллиардных инвестиций, и пока не совсем ясно, за счет кого они возьмутся.

В прессе альтернативная энергетика подается практически беспроблемной отраслью, сулящей в будущем получение дешевой и экологически чистой в производстве электроэнергии, но серьезный бизнес понимает риски, связанные с ней. Государственная поддержка не слишком надежный источник финансирования, делать на него ставку рискованно. Такой «родник» может пересохнуть в любой момент.

И еще одна существенная проблема. Солнечные и ветровые установки требуют отчуждения огромных площадей земли. Если для условий Соединенных Штатов это не большая проблема, то Западная Европа густо заселена. Поэтому крупных проектов, связанных с альтернативной энергетиков пока не осуществляется.

Энергокомпании, стремясь свести риск к минимуму, инвестируют совместно с различными фондами, в том числе, пенсионными, страховыми компаниями. Но даже в Германии все осуществляемые проекты не масштабные, а точечные. Опыта создания и продолжительной эксплуатации больших генерирующих мощностей в мире до сих пор нет.


Пока проблемы альтернативной энергетики, ее риски обсуждаются в основном экспертами, а потому не представляются обществу актуальными. Энергетика, как и всякая другая сложная, разветвленная и устоявшаяся система, имеет большую инерцию. И лишь годы развития какой-либо новой тенденции способны сдвинуть ее с места. По этой причине, скорее всего, развитие альтернативной энергетики будет все же происходить с государственной поддержкой и иметь режим максимального благоприятствования.

Все активнее ведет себя в США «зеленое» лобби. Даже серьезные исследователи делают ставку на альтернативную энергетику. Так, согласно отчету Стэнфордского университета штат Нью-Йорк уже к 2030 году может полностью удовлетворить потребности в электроэнергии за счет солнечных и ветровых установок. При этом в отчете указывается, что, если грамотно расположить их по территории штата, то нет необходимости поддерживать в резерве работоспособные тепловые генерирующие мощности. Правда, совсем отказаться от традиционной энергетики авторы отчета не предлагают.

Альтернативная энергетика уже перестала быть экзотикой, она реально существует. Понятно, что по мере ее развития количество связанных с ней проблем будет лишь нарастать.

Альтернативные источники энергии — это ветер, солнце, приливы и отливы, биомасса, геотермальная энергия Земли.

Ветряные мельницы давно используются человеком в качестве источника энергии. Однако они эффективны и пригодны только для мелкого пользователя. К сожалению, ветер пока еще не в состоянии давать электроэнергию в достаточных количествах. Солнечная и ветровая энергетика имеет серьезный недостаток — временную нестабильность именно в тот момент, когда она особенно нужна. В связи с этим необходимы системы хранения энергии, чтобы потребление ее могло быть возможно в любое время, но экономически зрелой технологии создания таких систем пока нет.

Первые ветряные электрогенераторы были разработаны еще в 90-х гг. XIX в. в Дании, а уже к 1910 г. в этой стране было построено несколько сот мелких установок. Еще через несколько лет датская промышленность получала от ветряных генераторов четверть необходимой ей электроэнергии. Их общая мощность составила 150-200 МВт.

В 1982 г. на китайском рынке было продано 1280 ветряных турбин, а в 1986 г. — 11 000, что позволило обеспечить электричеством те районы Китая, в которых раньше его никогда не было.

В начале XX в. в России насчитывалось 250 тыс. крестьянских ветряных мельниц мощностью до 1 млн кВт. Они перемалывали 2,5 млрд пудов зерна на месте, без дальних перевозок. К сожалению, в результате бездумного отношения к природным ресурсам в 40-х гг. прошлого века на территории бывшего СССР была разрушена основная часть ветряных и водяных двигателей, а к 50-м гг. они почти совсем исчезли как «отсталая техника».

В настоящее время солнечную энергию используют в некоторых странах в основном для отопления, а для производства энергии — в очень незначительных масштабах. Между тем мощность солнечного излучения, достигающего Земли, составляет 2 х 10 17 Вт, что более чем в 30 тыс. раз превышает сегодняшний уровень энергопотребления человечества.

Различают два основных варианта использования энергии Солнца: физический и биологический. При физическом варианте энергия аккумулируется солнечными коллекторами, солнечными элементами на полупроводниках или концентрируется системой зеркал. При биологическом варианте используется солнечная энергия, накопленная в процессе фотосинтеза в органическом веществе растений (обычно в древесине). Этот вариант годится для стран с относительно большими запасами леса. Например, Австрия планирует в ближайшие годы получать от сжигания древесины до трети необходимой ей электроэнергии. Для этих же целей в Великобритании планируется засадить лесом около 1 млн га земель, непригодных для сельскохозяйственного использования. Высаживаются быстрорастущие породы, такие как тополь, срезку которого производят уже через 3 года после посадки (высота этого дерева около 4 м, диаметр стволика — более 6 см).

Проблема использования нетрадиционных источников энергии в последнее время особенно актуальна. Это, несомненно, выгодно, хотя подобные технологии требуют значительных затрат. В феврале 1983 г. американская фирма «Арка Солар» начала эксплуатировать первую в мире солнечную электростанцию мощностью 1 МВт. Возведение таких электростанций — дорогое удовольствие. Сооружение солнечной электростанции, способной обеспечить электроэнергией около 10 тыс. бытовых потребителей (мощность — около 10 мМВт), обойдется в 190 млн дол. Это в четыре раза больше, нежели расходы на сооружение ТЭС, работающей на твердом топливе, и соответственно в три раза больше, чем строительство гидроэлектростанции и АЭС. Тем не менее специалисты по изучению солнечной энергии уверены, что с развитием технологии использования энергии Солнца цены на нее значительно снизятся.

Вероятно, будущее энергетики — за ветряной и солнечной энергией. В 1995 г. в Индии приступили к реализации программы по выработке энергии с помощью ветра. В США мощность ветряных электростанций составляет 1654 МВт, в Европейском союзе — 2534 МВт, из них 1000 МВт вырабатывается в Германии. В настоящее время наибольшего развития ветроэнергетика достигла в Германии, Англии, Голландии, Дании, США (только в Калифорнии 15 тыс. ветряков). Энергия, получаемая с помощью ветра, может постоянно возобновляться. Ветряные станции не загрязняют окружающую среду. С помощью ветряной энергии можно электрифицировать самые отдаленные уголки земного шара. К примеру, 1600 жителей острова Дезират в Гваделупе пользуются электричеством, которое вырабатывают 20 ветряных генераторов.

Из чего еще можно получать энергию, не загрязняя окружающую среду?

Для использования энергии приливов и отливов обычно строят приливные электростанции в устьях рек либо непосредственно на морском берегу. В обычном портовом волноломе оставляют отверстия, куда свободно поступает вода. Каждая волна повышает уровень воды, а следовательно, и давление остающегося в отверстиях воздуха. «Выдавливаемый» наружу через верхнее отверстие воздух приводит в движение турбину. С уходом волны возникает обратное движение воздуха, который стремится заполнить вакуум, и турбина получает новый импульс к вращению. Согласно оценкам специалистов, такие электростанции могут использовать до 45 % энергии приливов.

Волновая энергия представляется довольно многообещающей формой из новых энергоисточников. Например, на каждый метр волнового фронта, окружающего Британию со стороны Северной Атлантики, в среднем приходится 80 кВт энергии в год, или 120 000 ГВт. Существенные потери при переработке и передаче этой энергии неизбежны, и, по-видимому, лишь третья ее часть может поступать в сеть. Тем не менее оставшегося объема достаточно для того, чтобы обеспечить всю Британию электричеством на уровне существующей нормы потребления.

Привлекает ученых и использование биогаза, который представляет собой смесь горючего газа — метана (60-70 %) и негорючего углекислого газа. В нем обычно присутствуют примеси — сероводород, водород, кислород, азот. Образуется биогаз в результате анаэробного (бескислородного) разложения органики. Этот процесс в природе можно наблюдать на низинных болотах. Воздушные пузырьки, поднимающиеся со дна заболоченных участков, это и есть биогаз — метан и его производные.

Процесс получения биогаза можно разделить на два этапа. Вначале с помощью анаэробных бактерий из углеводов, белков и жиров образуется набор органических и неорганических веществ: кислоты (масляная, пропионовая, уксусная), водород, углекислота. На втором этапе (щелочном или метановом) подключаются метановые бактерии, которые разрушают органические кислоты с выделением метана, углекислого газа и небольшого количества водорода.

В зависимости от химического состава сырья при сбраживании выделяется от 5 до 15 кубометров газа на кубометр перерабатываемой органики.

Биогаз можно сжигать для отопления домов, сушки зерна, использовать в качестве горючего для автомобилей и тракторов. По своему составу биогаз мало отличается от природного газа. Кроме того, в процессе получения биогаза остаток брожения составляет примерно половину органических веществ. Его можно брикетировать и получать твердое топливо. Однако в хозяйственном отношении это не слишком рационально. Остаток брожения лучше использовать в качестве удобрения.

1 м 3 биогаза соответствует 1 л жидкого газа или 0,5 л высококачественного бензина. Получение биогаза даст технологическую выгоду — уничтожение отходов и энергетическую выгоду — дешевое горючее.

В Индии для получения биогаза используется около 1 млн дешевых и простых установок, а в Китае их свыше 7 млн. С точки зрения экологии биогаз имеет огромные преимущества, так как он может заменить дрова, а следовательно, сохранить лес и предотвратить опустынивание. В Европе ряд установок по очистке городских сточных вод удовлетворяет свои энергетические потребности за счет производимого ими биогаза.

Еще одним альтернативным источником энергии является сельскохозяйственное сырье: сахарный тростник, сахарная свекла, картофель, топинамбур и др. Из него методом ферментации в некоторых странах производят жидкое топливо, в частности этанол. Так, в Бразилии растительную массу преобразуют в этиловый спирт в таких количествах, что эта страна удовлетворяет большую часть своих потребностей в автомобильном топливе. Сырье, необходимое для организации массового производства этанола, — это в основном сахарный тростник. Сахарный тростник активно участвует в процессе фотосинтеза и производит на каждый гектар обрабатываемой площади больше энергии, чем другие культуры. В настоящее время его производство в Бразилии составляет 8,4 млн т, что соответствует 5,6 млн т бензина самого высокого качества. В США производится биохол — горючее для автомобилей, содержащее 10 % этанола, полученного из кукурузы.

Тепловую или электрическую энергию можно добывать за счет тепла земных глубин. Геотермальная энергетика экономически эффективна там, где горячие воды приближены к поверхности земной коры, — в районах активной вулканический деятельности с многочисленными гейзерами (Камчатка, Курильские острова, острова Японского архипелага). В отличие от других первичных источников энергии, носители геотермальной энергии невозможно транспортировать на расстояние, превышающее несколько километров. Поэтому земное тепло — типично локальный источник энергии, и работы, связанные с его эксплуатацией (разведка, подготовка буровых площадок, бурение, испытание скважин, забор жидкости, получение и передача энергии, подпитка, создание инфраструктур и т.д.), ведутся, как правило, на относительно небольшом участке с учетом местных условий.

Геотермальная энергия используется в широких масштабах в США, Мексике и на Филиппинах. Доля геотермальной энергии в энергетике Филиппин — 19 %, Мексики — 4 %, США (с учетом использования для отопления «напрямую», т.е. без переработки в электрическую энергию) — около 1 %. Суммарная мощность всех геоТЭС США превышает 2 млн кВт. Геотермальная энергия обеспечивает теплом столицу Исландии — Рейкьявик. Уже в 1943 г. там были пробурены 32 скважины на глубине от 440 до 2400 м, по которым к поверхности поднимается вода с температурой от 60 до 130 °С. Девять из этих скважин действуют по сей день. В России, на Камчатке, действует геоТЭС мощностью 11 МВт и строится еще одна мощностью 200 МВт.

В связи с развитием производственных технологий и значительным ухудшением экологической ситуации во многих регионах земного шара, человечество столкнулось с проблемой поиска новых источников энергии. С одной стороны, количество добываемой энергии должно быть достаточным для развития производства, науки и коммунально-бытовой сферы, с другой стороны, добыча энергии не должна отрицательно сказываться на окружающей среде.

Данная постановка вопроса привела к поиску так называемых альтернативных источников энергии — источников, соответствующих вышеуказанным требованиям. Усилиями мировой науки было обнаружено множество таких источников, на данный момент большинство из них уже используется более или менее широко. Предлагаем вашему вниманию их краткий обзор:

Солнечная энергия

Солнечные электростанции активно используются более чем в 80 странах, они преобразуют солнечную энергию в электрическую. Существуют разные способы такого преобразования и, соответственно, различные типы солнечных электростанций. Наиболее распространены станции, использующие фотоэлектрические преобразователи (фотоэлементы), объединенные в солнечные батареи. Большинство крупнейших фотоэлектрических установок мира находятся в США.

Энергия ветра

Ветроэнергетические установки (ветряные электростанции) широко используются в США, Китае, Индии, а также в некоторых западноевропейских странах (например в Дании, где 25% всей электроэнергии добывают именно таким способом). Ветроэнергетика является весьма перспективным источником альтернативной энергии, в настоящее время многие страны значительно расширяют использование электростанций данного типа.

Биотопливо

Главными преимуществами данного источника энергии перед другими видами топлива являются его экологичность и возобновляемость. К альтернативным источникам энергии относятся не все виды биотоплива: традиционные дрова тоже являются биотопливом, но не являются альтернативным источником энергии. Альтернативное биотопливо бывает твердым (торф, отходы деревообработки и сельского хозяйства), жидким (биодизель и биомазут, а также метанол, этанол, бутанол) и газообразное (водород, метан, биогаз).

Энергия приливов и волн

В отличие от традиционной гидроэнергетики, использующей энергию водного потока, альтернативная гидроэнергетика пока не получила широкого распространения. К главным минусам приливных электростанций относятся высокая стоимость их строительства и суточные изменения мощности, их за которых электростанции этого типа целесообразно использовать только в составе энергосистем, использующих также и другие источники энергии. Основные плюсы — высокая экологичность и низкая себестоимость получения энергии.

Тепловая энергия Земли

Для разработки этого источника энергии используются геотермальные электростанции, использующие энергию высокотемпературных грунтовых вод, а также вулканов. На данный момент более распространенной является гидротермальная энергетика, использующая энергию горячих подземных источников. Петротермальная энергетика, основанная на использовании «сухого» тепла земных недр, на данный момент развита слабо; основной проблемой считается низкая рентабельность данного способа получения энергии.

Атмосферное электричество

(Вспышки молний на поверхности Земли происходят практически одновременно в самых разных местах планеты )

Грозовая энергетика, основывающаяся на захвате и накоплении энергии молний, пока находится в стадии становления. Главными проблемами грозовой энергетики являются подвижность грозовых фронтов, а также быстрота атмосферных электрических разрядов (молний), затрудняющая накопление их энергии.

Перспективы использования альтернативных источников энергии

Традиционные источники энергии становятся неактуальными. Множество причин заставляет человечество отказываться от них. Сегодня основное внимание направлено на альтернативные способы, уже применяющиеся на практике и планируемые на будущее. Исследования продолжаются, поэтому наука движется вперёд, не останавливаясь на достигнутых результатах. Сейчас можно оценить некоторые достижения, уже давшие первые результаты, чтобы понять, насколько выгодными станут новые направления через несколько лет.

Альтернативная энергия продолжает распространяться. Причиной являются её явные преимущества перед традиционными источниками, которые сложно опровергнуть. В некоторых странах правительство ведёт сложные государственные программы с колоссальными денежными вложениями для постепенной замены, но пока результаты остаются незначительными.



Какие основные виды можно выделить?
  • Энергия молнии;
  • Энергия атома.

Бесконечные исследования позволяют сопоставить возможности, предлагаемые природой. Человечество продолжает искать новые направления, которые в будущем наверняка превратятся в идеальную замену традиционных источников. Подробное описание даст общую информацию, а также укажет, какие виды уже нашли применение в повседневной жизни населения планеты.

Энергия солнца используется человеком давно. Первоначальные попытки делались в древние времена, когда посредством направленного луча люди зажигали дерево. Современные способы основываются на использовании больших площадей батарей, собирающих потоки для последующей обработки и накопления в аккумуляторах.


При помощи такой энергии летают все космические станции и спутники. На орбите доступ к звезде открыт, но и на Земле некоторые страны активно пользуются новым источником. Одним из примеров являются целые «поля» батарей, обеспечивающие небольшие городки. Хотя намного интереснее рассмотреть новые небольшие автономные источники, где площадь поверхности не превышает крыши маленького дома. Они устанавливаются в частном порядке по всему миру, чтобы осуществлять отопление без лишних затрат.

Энергия ветра используется человечеством испокон веков. Лучшим примером этого являются парусники, двигающиеся за счёт постоянного воздушного потока. Теперь научные исследования позволили создать специальные генераторы, обеспечивающие электричеством целые города. Причём они работают по двум принципам:

  • Автономно;
  • Параллельно с основной сетью.



В обоих случаях удаётся постепенно заменять традиционный источник, сокращая пагубное воздействие на окружающую среду. Сейчас можно оценить достигнутые результаты, подтверждающие правильность выбора. Данные подсказывают, что в Дании 25% получаемой энергии приходится именно на ветряные электростанции. Многие страны стараются постепенно перейти на новые источники, но это возможно только на открытых пространствах. Из-за чего в отдельных районах использование лучшего варианта остаётся недоступным.

Энергия воды остаётся незаменимой. Раньше она применялась на простых мельницах и кораблях, а сейчас огромные турбинные ГЭС поставляют электричество в целых регионах. Последние разработки предлагают человечеству познакомиться с фантастическим будущим, которое будет построено на новейших источниках. Какие альтернативы уже используются странами?

  • Приливные электростанции;
  • Волновые электростанции;
  • Микро и мини ГЭС;
  • Аэро ГЭС.

Приливные электростанции используют энергию приливов. Их высота и мощь зависит от воздействия Луны, поэтому стабильность подачи остаётся некоторой проблемой. Хотя во Франции, Индии, Великобритании и нескольких других государствах проект воплощён в жизнь и успешно используется в качестве незаменимой поддержки.



Волновые электростанции строятся на берегах океанов, где мощь регулярных ударов о побережье превышают мыслимые пределы. В этом случае ограничением становится недостаточная сила. Она не позволяет получить достаточное количество энергии.

Микро и мини ГЭС подходят для узких горных рек. Их небольшие размеры позволяют свободно найти время, а их мощность подходит для обеспечения маленьких поселений. Опытные модели проверены, поэтому сейчас строятся действующие объекты, обладающие неплохими показателями.

Аэро ГЭС – новейшая технология, которая пока ещё проходит проверку. Она основана на конденсации влаги из атмосферы. Действующие установки пока остаются призрачной мечтой, но есть определённые показатели, подтверждающие целесообразность вложения денежных средств в разработки.

Геотермальная энергия остаётся распространённой. Такой альтернативный источник используется несколькими различными способами. Он остаётся одним из самых интересных для определённых регионов, поэтому отказ от неё не имеет смысла. Единственной проблемой является высокая стоимость установок, что ограничивает их количество. Какие варианты возможны?

  • Тепловые электростанции;
  • Грунтовые теплообменники.


Энергия молнии

Энергия молнии – новое веяние. Это направление только начинает разрабатываться, но учёные утверждают, что есть возможность использования доступных гигаватт. Они теряются впустую, уходя в грунт. Американская компания приступила к исследованиям, которые ориентированы на создание специальных установок для улавливания гроз.

Энергия молнии – мощный источник, способный обеспечить электроэнергией крупный район мегаполиса. Ориентировочные денежные затраты на строительство должны окупаться в течение 5─7 лет, так что целесообразность подобных вложений остаётся неоспоримой. Остаётся только дождаться окончания исследований для внедрения новой технологии в широкий обиход.