Домой / Форма бровей / Энергетическая проблема человечества и пути ее решения. Энергетические проблемы человечества

Энергетическая проблема человечества и пути ее решения. Энергетические проблемы человечества

Прогноз и требования к энергетике с позиции устойчивого развития человечества. Нетрадиционные источники энергии: Энергия Солнца, ветра, термальная энергия земли, энергия внутренних вод и биомассы. Попытки использования нетрадиционные источников энергии.

Министерство сельского хозяйства и продовольствия Российской Федерации

ФГОУ ВПО Уральская государственная сельскохозяйственная академия

Кафедра экологии и зоогигиены

Реферат по экологии:

Энергетические проблемы человечества

Исполнитель: ANTONiO

студент ФТЖ 212Т

Руководитель: Лопаева

Надежда Леонидовна

Екатеринбург 2007

  • Введение 3
  • Энергия Солнца 12
  • Ветровая энергия 15
  • Термальная энергия земли 18
  • Энергия внутренних вод 19
  • Энергия биомассы 20
  • Заключение 21
  • Литература 23
  • Введение
  • Сейчас, как никогда остро встал вопрос, о том, каким будет будущее планеты в энергетическом плане. Что ждет человечество — энергетический голод или энергетическое изобилие? В газетах и различных журналах все чаще и чаще встречаются статьи об энергетическом кризисе. Из-за нефти возникают войны, расцветают и беднеют государства, сменяются правительства. К разряду газетных сенсаций стали относить сообщения о запуске новых установок или о новых изобретениях в области энергетики. Разрабатываются гигантские энергетические программы, осуществление которых потребует громадных усилий и огромных материальных затрат.
  • Если в конце XIX века энергия играла, в общем, вспомогательную и незначительную в мировом балансе роль, то уже в 1930 году в мире было произведено около 300 миллиардов киловатт-часов электроэнергии. С течением времени — гигантские цифры, огромные темпы роста! И все равно энергии будет мало — потребности в ней растут еще быстрее. Уровень материальной, а, в конечном счёте, и духовной культуры людей находится в прямой зависимости от количества энергии, имеющейся в их распоряжении.
  • Чтобы добыть руду, выплавить из нее металл, построить дом, сделать любую вещь, нужно израсходовать энергию. А потребности человека все время растут, да и людей становится все больше. Так за чем же остановка? Ученые и изобретатели уже давно разработали многочисленные способы производства энергии, в первую очередь электрической. Давайте тогда строить все больше и больше электростанций, и энергии будет столько, сколько понадобится! Такое, казалось бы, очевидное решение сложной задачи, оказывается, таит в себе немало подводных камней. Неумолимые законы природы утверждают, что получить энергию, пригодную для использования, можно только за счет ее преобразований из других форм.
  • Вечные двигатели, якобы производящие энергию и ниоткуда ее не берущие, к сожалению, невозможны. А структура мирового энергохозяйства к сегодняшнему дню сложилась таким образом, что четыре из каждых пяти произведенных киловатт получаются в принципе тем же способом, которым пользовался первобытный человек для согревания, то есть при сжигании топлива, или при использовании запасенной в нем химической энергии, преобразовании ее в электрическую на тепловых электростанциях.
  • Правда, способы сжигания топлива стали намного сложнее и совершеннее. Возросшие требования к защите окружающей среды потребовали нового подхода к энергетике. В разработке Энергетической программы приняли участие виднейшие ученые и специалисты различных сфер. С помощью новейших математических моделей электронно-вычислительные машины рассчитали несколько сотен вариантов структуры будущего энергетического баланса. Были найдены принципиальные решения, определившие стратегию развития энергетики на грядущие десятилетия. Хотя в основе энергетики ближайшего будущего по-прежнему останется теплоэнергетика на не возобновляемых ресурсах, структура ее изменится. Должно сократиться использование нефти. Существенно возрастет производство электроэнергии на атомных электростанциях.

Энергетика: прогноз с позиции устойчивого развития человечества

Согласно каким законам будет развиваться энергетика мира в будущем, исходя из ООНовской Концепции устойчивого развития человечества? Результаты исследований иркутских ученых, сопоставление их с работами других авторов позволили установить ряд общих закономерностей и особенностей.

Концепция устойчивого развития человечества, сформулированная на Конференции ООН 1992 г. в Рио-де-Жанейро, несомненно, затрагивает и энергетику. На Конференции показано, что человечество не может продолжать развиваться традиционным путем, который характеризуется нерациональным использованием природных ресурсов и прогрессирующим негативным воздействием на окружающую среду. Если развивающиеся страны пойдут тем же путем, каким развитые страны достигли своего благополучия, то глобальная экологическая катастрофа будет неизбежна.

В основе концепции устойчивого развития лежит объективная необходимость (а также право и неизбежность) социально-экономического развития стран третьего мира. Развитые страны могли бы, по-видимому, «смириться» (по крайней мере, на какое-то время) с достигнутым уровнем благосостояния и потребления ресурсов планеты. Однако речь идет не просто о сохранении окружающей среды и условий существования человечества, но и об одновременном повышении социально-экономического уровня развивающихся стран (»Юга») и приближении его к уровню развитых стран (»Севера»).

Требования к энергетике устойчивого развития будут, конечно, шире, чем к экологически чистой энергетике. Требования неисчерпаемости используемых энергетических ресурсов и экологической чистоты, заложенные в концепции экологически чистой энергетической системы, удовлетворяют двум важнейшим принципам устойчивого развития — соблюдение интересов будущих поколений и сохранение окружающей среды. Анализируя остальные принципы и особенности концепции устойчивого развития, можно заключить, что к энергетике в данном случае следует предъявить, как минимум, два дополнительных требования:

– обеспечение энергопотребления (в том числе, энергетических услуг населению) не ниже определенного социального минимума;

– развитие национальной энергетики (так же, как и экономики) должно быть взаимно скоординировано с развитием ее на региональном и глобальном уровнях.

Первое вытекает из принципов приоритета социальных факторов и обеспечения социальной справедливости: для реализации права людей на здоровую и плодотворную жизнь, уменьшения разрыва в уровне жизни народов мира, искоренения бедности и нищеты, необходимо обеспечить определенный прожиточный минимум, в том числе, удовлетворение минимально необходимых потребностей в энергии населения и экономики.

Второе требование связано с глобальным характером надвигающейся экологической катастрофы и необходимостью скоординированных действий всего мирового сообщества по устранению этой угрозы. Даже страны, имеющие достаточные собственные энергетические ресурсы, как, например, Россия, не могут изолированно планировать развитие своей энергетики из-за необходимости учитывать глобальные и региональные экологические и экономические ограничения.

В 1998–2000 гг. в ИСЭМ СО РАН проведены исследования перспектив развития энергетики мира и его регионов в XXI веке, в которых наряду с обычно ставящимися целями определения долгосрочных тенденций в развитии энергетики, рациональных направлений НТП и т.п. сделана попытка проверки получаемых вариантов развития энергетики «на устойчивость», т.е. на соответствие условиям и требованиям устойчивого развития. При этом в отличие от вариантов развития, разрабатывавшихся ранее по принципу «что будет, если…», авторы попытались предложить по возможности правдоподобный прогноз развития энергетики мира и его регионов в XXI веке. При всей его условности дается более реалистичное представление о будущем энергетики, ее возможном влиянии на окружающую среду, необходимых экономических затратах и др.

Общая схема этих исследований в значительной мере традиционна: использование математических моделей, для которых готовится информация по энергетическим потребностям, ресурсам, технологиям, ограничениям. Для учета неопределенности информации, в первую очередь по потребностям в энергии и ограничениям, формируется набор сценариев будущих условий развития энергетики. Результаты расчетов на моделях затем анализируются с соответствующими выводами и рекомендациями.

Основным инструментом исследований являлась Глобальная энергетическая модель GEM-10R. Эта модель — оптимизационная, линейная, статическая, многорегиональная. Как правило, мир делился на 10 регионов: Северная Америка, Европа, страны бывшего СССР, Латинская Америка, Китай и др. Модель оптимизирует структуру энергетики одновременно всех регионов с учетом экспорта-импорта топлива и энергии по 25-летним интервалам — 2025, 2050, 2075 и 2100 гг. Оптимизируется вся технологическая цепочка, начиная с добычи (или производства) первичных энергоресурсов, кончая технологиями производства четырех видов конечной энергии (электрической, тепловой, механической и химической). В модели представлено несколько сот технологий производства, переработки, транспорта и потребления первичных энергоресурсов и вторичных энергоносителей. Предусмотрены экологические региональные и глобальные ограничения (на выбросы СО 2 , SO 2 и твердых частиц), ограничения на развитие технологий, расчет затрат на развитие и функционирование энергетики регионов, определение двойственных оценок и др. Первичные энергетические ресурсы (в том числе, возобновляемые) в регионах задаются с разделением на 4-9 стоимостных категорий.

Анализ результатов показал, что полученные варианты развития энергетики мира и регионов по-прежнему трудно реализуемы и не вполне отвечают требованиям и условиям устойчивого развития мира в социально-экономических аспектах. В частности, рассматривавшийся уровень энергопотребления представился, с одной стороны, трудно достижимым, а с другой стороны — не обеспечивающим желаемого приближения развивающихся стран к развитым по уровню душевого энергопотребления и экономического развития (удельному ВВП). В связи с этим был выполнен новый прогноз энергопотребления (пониженного) в предположении более высоких темпов снижения энергоемкости ВВП и оказания экономической помощи развитых стран развивающимся.

Высокий уровень энергопотребления определен исходя из удельных ВВП, в основном соответствующих прогнозам Мирового банка. При этом в конце XXI века развивающиеся страны достигнут лишь современного уровня ВВП развитых стран, т.е. отставание составит около 100 лет. В варианте низкого энергопотребления размер помощи развитых стран развивающимся принят исходя из обсуждавшихся в Рио-де-Жанейро показателей: около 0,7 % ВВП развитых стран, или 100-125 млрд дол. в год. Рост ВВП развитых стран при этом несколько уменьшается, а развивающихся — увеличивается. В среднем же по миру душевой ВВП в этом варианте увеличивается, что свидетельствует о целесообразности оказания такой помощи с точки зрения всего человечества.

Душевое потребление энергии в низком варианте в промышленно развитых странах стабилизируется, в развивающихся — возрастет к концу века примерно в 2,5 раза, а в среднем по миру — в 1,5 раза по сравнению с 1990 г. Абсолютное мировое потребление конечной энергии (с учетом роста населения) увеличится к концу начавшегося столетия по высокому прогнозу примерно в 3,5 раза, по низкому — в 2,5 раза.

Использование отдельных видов первичных энергоресурсов характеризуется следующими особенностями. Нефть во всех сценариях расходуется примерно одинаково — в 2050 г. достигается пик ее добычи, а к 2100 г. дешевые ресурсы (первых пяти стоимостных категорий) исчерпываются полностью или почти полностью. Такая устойчивая тенденция объясняется большой эффективностью нефти для производства механической и химической энергии, а также тепла и пиковой электроэнергии. В конце века нефть замещается синтетическим топливом (в первую очередь, из угля).

Добыча природного газа непрерывно увеличивается в течение всего века, достигая максимума в его конце. Две наиболее дорогие категории (нетрадиционный метан и метаногидраты) оказались неконкурентоспособными. Газ используется для производства всех видов конечной энергии, но в наибольшей степени — для производства тепла.

Уголь и ядерная энергия подвержены наибольшим изменениям в зависимости от вводимых ограничений. Будучи примерно равноэкономичными, они замещают друг друга, особенно в «крайних» сценариях. В наибольшей мере они используются на электростанциях. Значительная часть угля во второй половине века перерабатывается в синтетическое моторное топливо, а ядерная энергия в сценариях с жесткими ограничениями на выбросы СО 2 в больших масштабах используется для получения водорода.

Использование возобновляемых источников энергии существенно различается в разных сценариях. Устойчиво используются лишь традиционные гидроэнергия и биомасса, а также дешевые ресурсы ветра. Остальные виды ВИЭ являются наиболее дорогими ресурсами, замыкают энергетический баланс и развиваются по мере необходимости.

Интересно проанализировать затраты на мировую энергетику в разных сценариях. Меньше всего они, естественно, в двух последних сценариях с пониженным энергопотреблением и умеренными ограничениями. К концу века они возрастают примерно в 4 раза по сравнению с 1990 г. Наибольшие затраты получились в сценарии с повышенным энергопотреблением и жесткими ограничениями. В конце века они в 10 раз превышают затраты 1990 г. и в 2,5 раза — затраты в последних сценариях.

Следует отметить, что введение моратория на ядерную энергетику при отсутствии ограничений на выбросы СО 2 увеличивает затраты всего на 2 %, что объясняется примерной равноэкономичностью АЭС и электростанций на угле. Однако, если при моратории на ядерную энергетику ввести жесткие ограничения на выбросы СО 2 , то затраты на энергетику возрастают почти в 2 раза.

Следовательно, «цены» ядерного моратория и ограничений на выбросы СО 2 очень велики. Анализ показал, что затраты на снижение выбросов СО 2 могут составить 1-2 % от мирового ВВП, т.е. они оказываются сопоставимыми с ожидаемым ущербом от изменения климата планеты (при потеплении на несколько градусов). Это дает основания говорить о допустимости (или даже необходимости) смягчения ограничений на выбросы СО 2 . Фактически требуется минимизировать сумму затрат на снижение выбросов СО 2 и ущербов от изменения климата (что, конечно, представляет исключительно сложную задачу).

Очень важно, что дополнительные затраты на уменьшение выбросов СО 2 должны нести, главным образом, развивающиеся страны. Между тем, эти страны, с одной стороны, не виновны в создавшемся с тепличным эффектом положении, а с другой — просто не имеют таких средств. Получение же этих средств от развитых стран, несомненно, вызовет большие трудности и это — одна из серьезнейших проблем достижения устойчивого развития.

Нетрадиционные источники энергии

В XXI веке мы трезво отдаём себе отчёт в реальностях третьего тысячелетия. К сожалению, запасы нефти, газа, угля отнюдь не бесконечны. Природе, чтобы создать эти запасы, потребовались миллионы лет, израсходованы они будут за сотни. Сегодня в мире стали всерьез задумываться над тем, как не допустить хищнического разграбления земных богатств. Ведь лишь при этом условии запасов топлива может хватить на века. К сожалению, многие нефтедобывающие страны живут сегодняшним днем. Они нещадно расходуют подаренные им природой нефтяные запасы. Что же произойдет тогда, а это рано или поздно случится, когда месторождения нефти и газа будут исчерпаны? Вероятность скорого истощения мировых запасов топлива, а также ухудшение экологической ситуации в мире, (переработка нефти и довольно частые аварии во время ее транспортировки представляют реальную угрозу для окружающей среды) заставили задуматься о других видах топлива, способных заменить нефть и газ.

Сейчас в мире все больше ученых инженеров занимаются поисками новых, нетрадиционных источников которые могли бы взять на себя хотя бы часть забот по снабжению человечества энергией. Нетрадиционные возобновляемые источники энергии включают солнечную, ветровую, геотермальную энергию, биомассу и энергию Мирового океана.

Энергия Солнца


В последнее время интерес к проблеме использования солнечной энергии резко возрос, и хотя этот источник также относится к возобновляемым, внимание, уделяемое ему во всем мире, заставляет нас рассмотреть его возможности отдельно. Потенциальные возможности энергетики, основанной на использовании непосредственно солнечного излучения, чрезвычайно велики. Заметим, что использование всего лишь 0,0125 % этого количества энергии Солнца могло бы обеспечить все сегодняшние потребности мировой энергетики, а использование 0.5 % — полностью покрыть потребности на перспективу. К сожалению, вряд ли когда-нибудь эти огромные потенциальные ресурсы удастся реализовать в больших масштабах. Одним из наиболее серьезных препятствий такой реализации является низкая интенсивность солнечного излучения.

Даже при наилучших атмосферных условиях (южные широты, чистое небо) плотность потока солнечного излучения составляет не более 250 Вт/м2. Поэтому, чтобы коллекторы солнечного излучения «собирали» за год энергию, необходимую для удовлетворения всех потребностей человечества нужно разместить их на территории 130 000 км 2 ! Необходимость использовать коллекторы огромных размеров, кроме того, влечет за собой значительные материальные затраты. Простейший коллектор солнечного излучения представляет собой зачерненный металлический лист, внутри которого располагаются трубы с циркулирующей в ней жидкостью. Нагретая за счёт солнечной энергии, поглощённой коллектором, жидкость поступает для непосредственного использования. Согласно расчетам изготовление коллекторов солнечного излучения площадью 1 км 2 , требует примерно 10 4 тонн алюминия. Доказанные же на сегодня мировые запасы этого металла оцениваются в 1.17*10 9 тонн.

Ясно, что существуют разные факторы, ограничивающие мощность солнечной энергетики. Предположим, что в будущем для изготовления коллекторов станет возможным применять не только алюминий, но и другие материалы. Изменится ли ситуация в этом случае? Будем исходить из того, что на отдельной фазе развития энергетики (после 2100 года) все мировые потребности в энергии будут удовлетворяться за счет солнечной энергии. В рамках этой модели можно оценить, что в этом случае потребуется «собирать» солнечную энергию на площади от 1*10 6 до 3*10 6 км 2 . В то же время общая площадь пахотных земель в мире составляет сегодня 13*10 6 км 2 . Солнечная энергетика относится к наиболее материалоёмким видам производства энергии. Крупномасштабное использование солнечной энергии влечет за собой гигантское увеличение потребности в материалах, а следовательно, и в трудовых ресурсах для добычи сырья, его обогащения, получения материалов, изготовление гелиостатов, коллекторов, другой аппаратуры, их перевозки. Подсчеты показывают, что для производства 1 МВт в год электрической энергии с помощью солнечной энергетики потребуется затратить от 10 000 до 40 000 человеко-часов.

В традиционной энергетике на органическом топливе этот показатель составляет 200-500 человеко-часов. Пока еще электрическая энергия, рожденная солнечными лучами, обходится намного дороже, чем получаемая традиционными способами. Ученые надеются, что эксперименты, которые они проведут на опытных установках и станциях, помогут решить не только технические, но и экономические проблемы.

Первые попытки использования солнечной энергии на коммерческой основе относятся к 80-м годам прошлого столетия. Крупнейших успехов в этой области добилась фирма Loose Industries (США). Ею в декабре 1989 года введена в эксплуатацию солнечно-газовая станция мощностью 80 МВт. Здесь же, в Калифорнии, в 1994 году было введено еще 480 МВт электрической мощности, причем, стоимость 1 кВт/ч энергии – 7-8 центов. Это ниже, чем на традиционных станциях. В ночные часы и зимой энергию дает, в основном, газ, а летом и в дневные часы – солнце. Электростанция в Калифорнии продемонстрировала, что газ и солнце, как основные источники энергии ближайшего будущего, способны эффективно дополнять друг друга. Поэтому не случаен вывод, что в качестве партнера солнечной энергии должны выступать различные виды жидкого или газообразного топлива. Наиболее вероятной “кандидатурой” является водород.

Его получение с использованием солнечной энергии, например, путем электролиза воды может быть достаточно дешевым, а сам газ, обладающий высокой теплотворной способностью, легко транспортировать и длительно хранить. Отсюда вывод: наиболее экономичная возможность использования солнечной энергии, которая просматривается сегодня – направлять ее для получения вторичных видов энергии в солнечных районах земного шара. Полученное жидкое или газообразное топливо можно будет перекачивать по трубопроводам или перевозить танкерами в другие районы. Быстрое развитие гелиоэнергетики стало возможным благодаря снижению стоимости фотоэлектрических преобразователей в расчете на 1 Вт установленной мощности с 1000 долларов в 1970 году до 3-5 долларов в 1997 году и повышению их КПД с 5 до 18%. Уменьшение стоимости солнечного ватта до 50 центов позволит гелиоустановкам конкурировать с другими автономными источниками энергии, например, с дизельэлектростанциями.

Ветровая энергия


Огромна энергия движущихся воздушных масс. Запасы энергии ветра более чем в сто раз превышают запасы гидроэнергии всех рек планеты. Ветры, дующие на просторах нашей страны, могли бы легко удовлетворить все ее потребности в электроэнергии! Климатические условия позволяют развивать ветроэнергетику на огромной территории от наших западных границ до берегов Енисея. Богаты энергией ветра северные районы страны вдоль побережья Северного Ледовитого океана, где она особенно необходима мужественным людям, обживающим эти богатейшие края. Почему же столь обильный, доступный да и экологически чистый источник энергии так слабо используется? В наши дни двигатели, использующие ветер, покрывают всего одну тысячную мировых потребностей в энергии. Техника XX века открыла совершенно новые возможности для ветроэнергетики, задача которой стала другой — получение электроэнергии. В начале века Н.Е. Жуковский разработал теорию ветродвигателя, на основе которой могли быть созданы высокопроизводительные установки, способные получать энергию от самого слабого ветерка. Появилось множество проектов ветроагрегатов, несравненно более совершенных, чем старые ветряные мельницы. В новых проектах используются достижения многих отраслей знания. В наши дни к созданию конструкций ветроколеса — сердца любой ветроэнергетической установки привлекаются специалисты-самолетостроители, умеющие выбрать наиболее целесообразный профиль лопасти, исследовать его в аэродинамической трубе. Усилиями ученых и инженеров созданы самые разнообразные конструкции современных ветровых установок.

Первой лопастной машиной, использовавшей энергию ветра, был парус. Парус и ветродвигатель кроме одного источника энергии объединяет один и тот же используемый принцип. Исследования Ю. С. Крючкова показали, что парус можно представить в виде ветродвигателя с бесконечным диаметром колеса. Парус является наиболее совершенной лопастной машиной, с наивысшим коэффициентом полезного действия, которая непосредственно использует энергию ветра для движения.

Ветроэнергетика, использующая ветроколеса и ветрокарусели, возрождается сейчас, прежде всего, в наземных установках. В США уже построены и эксплуатируются коммерческие установки. Проекты наполовину финансируются из государственного бюджета. Вторую половину инвестируют будущие потребители экологически чистой энергии.

Первые разработки теории ветродвигателя относятся к 1918 г. В. Залевский заинтересовался ветряками и авиацией одновременно. Он начал создавать полную теорию ветряной мельницы и вывел несколько теоретических положений, которым должна отвечать ветроустановка.

В начале ХХ века интерес к воздушным винтам и ветроколесам не был обособлен от общих тенденций времени – использовать ветер, где это только возможно. Первоначально наибольшее распространение ветроустановки получили в сельском хозяйстве. Воздушный винт использовали для привода судовых механизмов. На всемирно известном “Фраме” он вращал динамомашину. На парусниках ветряки приводили в движение насосы и якорные механизмы.

В России к началу прошлого века вращалось около 2500 тысяч ветряков общей мощностью миллион киловатт. После 1917 года мельницы остались без хозяев и постепенно разрушились. Правда, делались попытки использовать энергию ветра уже на научной и государственной основе. В 1931 году вблизи Ялты была построена крупнейшая по тем временам ветроэнергетическая установка мощностью 100 кВт, а позднее разработан проект агрегата на 5000 кВт. Но реализовать его не удалось, так как Институт ветроэнергетики, занимавшийся этой проблемой, был закрыт.

В США к 1940 году построили ветроагрегат мощностью в 1250 кВт. К концу войны одна из его лопастей получила повреждение. Ее даже не стали ремонтировать – экономисты подсчитали, что выгодней использовать обычную дизельную электростанцию. Дальнейшие исследования этой установки прекратились.

Неудавшиеся попытки использовать энергию ветра в крупномасштабной энергетике сороковых годов XX века не были случайны. Нефть оставалась сравнительно дешевой, резко снизились удельные капитальные вложения на крупных тепловых электростанциях, освоение гидроэнергии, как тогда казалось, гарантирует и низкие цены и удовлетворительную экологическую чистоту.

Существенным недостатком энергии ветра является ее изменчивость во времени, но его можно скомпенсировать за счет расположения ветроагрегатов. Если в условиях полной автономии объединить несколько десятков крупных ветроагрегатов, то средняя их мощность будет постоянной. При наличии других источников энергии ветрогенератор может дополнять существующие. И, наконец, от ветродвигателя можно непосредственно получать механическую энергию.

Термальная энергия земли


Издавна люди знают о стихийных проявлениях гигантской энергии, таящейся в недрах земного шара. Мощность извержения многократно превышает мощность самых крупных энергетических установок, созданных руками человека. Правда, о непосредственном использовании энергии вулканических извержений говорить не приходится — нет пока у людей возможностей обуздать эту непокорную стихию, да и, к счастью, извержения эти достаточно редкие события. Но это проявления энергии, таящейся в земных недрах, когда лишь крохотная доля этой неисчерпаемой энергии находит выход через огнедышащие жерла вулканов. Маленькая европейская страна Исландия полностью обеспечивает себя помидорами, яблоками и даже бананами! Многочисленные исландские теплицы получают энергию от тепла земли — других местных источников энергии в Исландии практически нет. Зато очень богата эта страна горячими источниками и знаменитыми гейзерами-фонтанами горячей воды, с точностью хронометра вырывающейся из-под земли. И хотя не исландцам принадлежит приоритет в использовании тепла подземных источников, жители этой маленькой северной страны эксплуатируют подземную котельную очень интенсивно.

Рейкьявик, в которой проживает половина населения страны, отапливается только за счет подземных источников. Но не только для отопления черпают люди энергию из глубин земли. Уже давно работают электростанции, использующие горячие подземные источники. Первая такая электростанция, совсем еще маломощная, была построена в 1904 году в небольшом итальянском городке Лардерелло. Постепенно мощность электростанции росла, в строй вступали все новые агрегаты, использовались новые источники горячей воды, и в наши дни мощность станции достигла уже внушительной величины — 360 тысяч киловатт. В Новой Зеландии существует такая электростанция в районе Вайракеи, ее мощность 160 тысяч киловатт. В 120 километрах от Сан-Франциско в США производит электроэнергию геотермальная станция мощностью 500 тысяч киловатт.

Энергия внутренних вод

Раньше всего люди научились использовать энергию рек. Но в золотой век электричества, произошло возрождение водяного колеса в виде водяной турбины. Электрические генераторы, производящие энергию, необходимо было вращать, а это вполне успешно могла делать вода. Можно считать, что современная гидроэнергетика родилась в 1891 году. Преимущества гидроэлектростанций очевидны — постоянно возобновляемый самой природой запас энергии, простота эксплуатации, отсутствие загрязнения окружающей среды. Да и опыт постройки и эксплуатации водяных колес мог бы оказать немалую помощь гидроэнергетикам.

Однако, чтобы привести во вращение мощные гидротурбины, нужно накопить за плотиной огромный запас воды. Для постройки плотины требуется уложить такое количество материалов, что объем гигантских египетских пирамид по сравнению с ним покажется ничтожным. В 1926 году в строй вошла Волховская ГЭС, в следующем началось строительство знаменитой Днепровской. Энергетическая политика нашей страны, привела к тому, что у нас развита система мощных гидроэлектрических станций. Ни одно государство не может похвастаться такими энергетическими гигантами, как Волжские, Красноярская и Братская, Саяно-Шушенская ГЭС. Энергоустановка на реке Ранс, состоящая из 24 реверсивных турбогенераторов, и имеющая выходную мощность 240 мегаватт — одна из наиболее мощных гидроэлектростанций во Франции. Гидроэлектростанции являются наиболее экономически выгодным источником энергии. Но имеют недостатки — при транспортировке электроэнергии по линиям электропередач происходят потери до 30% и создаётся экологически опасное электромагнитное излучение. Пока людям служит лишь небольшая часть гидроэнергетического потенциала земли. Ежегодно огромные потоки воды, образовавшиеся от дождей и таяния снегов, стекают в моря неиспользованными. Если бы удалось задержать их с помощью плотин, человечество получило бы дополнительно колоссальное количество энергии.

Энергия биомассы

В США в середине 70-х годов группа специалистов в области исследования океана, морских инженеров и водолазов создала первую в мире океанскую энергетическую ферму на глубине 12 метров под залитой солнцем гладью Тихого океана вблизи города Сан-Клемент. На ферме выращивались гигантские калифорнийские бурые водоросли. По мнению директора проекта доктора Говарда А. Уилкокса, сотрудника Центра исследования морских и океанских систем в Сан-Диего (Калифорния), «до 50 % энергии этих водорослей может быть превращено в топливо — в природный газ метан. Океанские фермы будущего, выращивающие бурые водоросли на площади примерно 100 000 акров (40 000 га), смогут давать энергию, которой хватит, чтобы полностью удовлетворить потребности американского города с населением в 50 000 человек».

К биомассе, кроме водорослей, можно также отнести и продукты жизнедеятельности домашних животных. Так, 16 января 1998 года в газете “Санкт Петербургские Ведомости” была напечатана статья, под названием “Электричество… из куриного помёта” в которой говорилось о том, что находящаяся в финском городе Тампере дочерняя фирма международного норвежского судостроительного концерна Kvaerner стремится получить поддержку ЕС для сооружения в британском Нортхэмптоне электростанции, действующей… на курином помете. Проект входит в программу EС Thermie, которая предусматривает развитие новых, нетрадиционных, источников энергии и методов сбережения энергетических ресурсов. Комиссия ЕС распределила 13 января 140 млн ЭКЮ среди 134 проектов.

Спроектированная финской фирмой силовая установка будет сжигать в топках 120 тысяч тонн куриного помета в год, вырабатывая 75 млн киловатт-часов энергии.

Заключение


Можно выделить ряд общих тенденций и особенностей в развитии энергетики мира в начавшемся столетии.

1. В XXI в. неизбежен значительный рост мирового потребления энергии, в первую очередь, в развиваюшихся странах. В промышленно развитых странах энергопотребление может стабилизироваться примерно на современном уровне или даже снизиться к концу века. По низкому прогнозу, сделанному авторами, мировое потребление конечной энергии может составить в 2050 г. 350 млн Тдж/год, в 2100 г. — 450 млн Тдж/год (при современном потреблении около 200 млн Тдж/год).

2. Человечество в достаточной мере обеспечено энергетическими ресурсами на XXI век, но удорожание энергии неизбежно. Ежегодные затраты на мировую энергетику возрастут в 2,5-3 раза к середине века и в 4-6 раз к концу его по сравнению с 1990 г. Средняя стоимость единицы конечной энергии увеличится в эти сроки, соответственно, на 20-30 и 40-80 % (увеличение цен на топливо и энергию может быть еще значительнее).

3. Введение глобальных ограничений на выбросы СО 2 (наиболее важного тепличного газа) очень сильно повлияет на структуру энергетики регионов и мира в целом. Попытки сохранения глобальных выбросов на современном уровне следует признать нереальными из-за трудно разрешимого противоречия: дополнительные затраты на ограничение выбросов СО 2 (около 2 трлн долл./год в середине века и более 5 трлн долл./год в конце века) должны будут нести преимущественно развивающиеся страны, которые, между тем, «не виновны» в создавшейся проблеме и не имеют необходимых средств; развитые же страны вряд ли захотят и смогут оплатить такие затраты. Реалистичным с точки зрения обеспечения удовлетворительных структур энергетики регионов мира (и затрат на ее развитие) можно считать ограничение во второй половине века глобальных выбросов СО 2 до 12-14 Гт С/год, т.е. до уровня примерно в два раза выше, чем было в 1990 г. При этом сохраняется проблема распределения квот и дополнительных затрат на ограничение выбросов между странами и регионами.

4. Развитие ядерной энергетики представляет наиболее эффективное средство снижения выбросов СО 2 . В сценариях, где вводились жесткие или умеренные ограничения на выбросы СО 2 и отсутствовали ограничения на ядерную энергетику, оптимальные масштабы ее развития получились чрезвычайно большими. Другим показателем ее эффективности явилась «цена» ядерного моратория, которая при жестких ограничениях на выбросы СО 2 выливается в 80-процентное увеличение затрат на мировую энергетику (более 8 трлн долл./год в конце XXI в.). В связи с этим были рассмотрены сценарии с «умеренными» ограничениями на развитие ядерной энергетики для поиска реально возможных альтернатив.

5. Непременное условие перехода к устойчивому развитию — помощь (финансовая, техническая) наиболее отсталым странам со стороны развитых стран. Для получения реальных результатов такая помощь должна быть оказана в самые ближайшие десятилетия, с одной стороны, для ускорения процесса приближения уровня жизни развивающихся стран к уровню развитых, а с другой — чтобы такая помощь еще могла составить заметную долю в быстро увеличивающемся суммарном ВВП развивающихся стран.

Наша планета и наше общество находятся в процессе непрекращающегося развития, а это требует от нас – людей – своевременно приспосабливаться к изменениям в окружающей среде и условиях жизни. Любые перемены ведут к возникновению новых потребностей в мировом масштабе или в отдельных регионах и использованию новейших технологий для их удовлетворения. Часто оказывается, то, что недавно считалось современным, мгновенно становится устаревшим. Производители должны обладать определенным чутьем на появление новых тенденций, чтобы во время усовершенствовать свою продукцию. Это относится и к трансформаторам, которые, казалось бы, уже не нужно подвергать каким-либо изменениям.

Одно из самых значительных событий за последние несколько десятилетий на планете Земля связано с бурным ростом населения. С 1950 по 2010 оно выросло на 2,7 млрд. человек, а к концу 2011 составило более семи млрд. Более того, ожидается, что рост населения продолжится еще в течение нескольких десятилетий и пойдет на убыль только после 2050 года, к тому времени общее количество людей увеличится еще на 35% и составит 9,2 млрд. человек. Спрос на электроэнергию растет пропорционально росту населения.

Растущая потребность в электроэнергии и электричестве

Кроме увеличения численности население возрастающий спрос на электроэнергию обусловлен становлением развивающихся стран: так, рост ВВП на 1% требует увеличения потребления энергии на 0,6% в среднем. Совокупные расходы на электроэнергию составляют около 7-8 % от общемирового ВВП и представляют собою значительные издержки. Все эти факторы заставляют задуматься об организации высокоэффективных процессов производства и поставки электроэнергии. К тому же, проводя расчеты, важно оценить весь производственный цикл и включить расходы, связанные с энергопотерями и стоимостью оборудования.

Из всей энергии, потребляемой в мире, только 15% приходится на электроэнергию, хотя для производства этого количества расходуется 38% первичных энергоресурсов. В настоящее время электричество может быть использовано во всех сферах деятельности, так как представляет собой высококачественную форму энергии. К тому же оно не загрязняет окружающую среду. Все это предопределяет рост потребности в электричестве в будущем и его все упрочняющуюся роль на энергетическом рынке. Показательными примерами являются замена нефтяного или газового центрального отопления на электротепловые насосы или внедрение электромобилей.

И хотя суммарный КПД растет, что приводит к сокращению потребления первоначальных энергоресурсов, спрос на саму электроэнергию повышается. В то время как в развитых странах на одного человека в среднем приходится около одного 1 кВт, общемировое потребление составляет только 0,3 кВт. Такая статистика указывает на дальнейший значительный рост потребности в электричестве в развивающихся странах, а значит, и увеличение спроса на оборудование, обеспечивающее высокоэффективную передачу и распределение электроэнергии.

Существует один значительный фактор, определяющий рост потребности в электричестве в мировом масштабе, - это его необходимость для функционирования информационных и телекоммуникационных систем. Современные, большие центры обработки и передачи данных, например, относятся к крупнейшим потребителям электроэнергии.

Урбанизация

Еще одной заметной тенденцией является урбанизация. Все больше и больше людей переезжают из сельской местности в большие города. К 2050 году ожидается, что две трети всего населения будут проживать там, для сравнения: сейчас в городах проживает около половины.
Согласно Отделу народонаселения ООН в настоящее время насчитывается 24 мегаполиса с населением более 10 млн. человек. Обеспечить их всем необходимым: едой, товарами и коммунальными услугами – считается основной задачей современных логистических служб. Это также относится к поставкам электроэнергии. Плотность энерговыделения в местах массовой застройки небоскребами очень высока, поэтому необходимы новые решения для безопасного и надежного проведения электросетей в центрах больших городов. Слишком высокая стоимость недвижимости не позволяет размещать подстанции в домах, поэтому их устанавливают под землей.

Одна из наиболее значимых экологических проблем, которые имеют планетарное значение, связана с действием газов, вызывающих парниковый эффект, и изменением климата. Существует несколько видов эмиссий, которые способствуют этому процессу, однако больше всего опасений вызывает углекислый газ. Чтобы избежать существенного нагревания земной поверхности в ближайшие 20 лет, требуется пересмотреть политику и остановить необратимые изменения климата. В 2010 году общемировые выбросы углекислого газа, связанные с электроэнергетикой резко увеличились на 5,3% до рекордных 30,4 гигатон. Если подобная тенденция продолжится, то ожидается увеличение выбросов до 40 гигатон к 2030 году, а это может стать причиной потепления на 3,5 C° . Тем не менее, согласно 450 сценарию МЭА, ожидается, что выбросы, связанные с энергетикой, достигнут наивысшего показателя к 2020 года, а затем снизятся до 21,5 гигатон к 2035 году.

Рациональное использование электросетей может способствовать сокращению выбросов углекислого газа. Распределительные сети обычно на 95% более эффективны, а производительность трансформаторов распределительной сети выше на 99%. Несмотря на этот факт, огромные размеры базы установленных трансформаторов объясняют, почему совокупные энергопотери составляют значительную часть потерь в распределительной сети. Поэтому даже незначительные изменения в производительности трансформаторов способны существенно сократить выбросы углекислого газа.

Производительность трансформаторов рассматривается либо с точки зрения значения уровня потерь, либо уровня их КПД.

Значения КПД сравниваются при нагрузке 50%. Государственные стандарты, определяющие уровень энергопотерь трансформаторов, в последнее время претерпевают серьезные изменения: правительство и представители энергокомпаний стараются соответствовать своим обязательствам и обязанностям в сфере энергоэффективности и климатических изменений. Для разных стран характерны различные уровни эффективности трансформаторов. Низкий и средний упразднены – все страны переходят на высокий, очень высокий и сверхвысокий уровни. Сверхвысокий КПД могут показывать только трансформаторы с сердечником из аморфного металла.

Огромные размеры базы установленных трансформаторов объясняют, почему совокупные энергопотери составляют значительную часть потерь в распределительной сети.
Из всей энергии, потребляемой в мире, только 15% приходится на электроэнергию, хотя для производства этого количества расходуется 38% первичных энергоресурсов.

Еще одним ключевым моментом в борьбе против выбросов CO2 является получение электричества с помощью природных ресурсов: энергии ветра, солнца, волн и геотермальных источников. В 2011 году возобновляемые источники энергии (кроме крупных ГЭС) составили 44% дополнительных мощностей нового поколения по всему миру. В том же году общемировые инвестиции в возобновляемы источники энергии и топлива увеличился на 17 % и достиг новых рекордных показателей – 257 млрд. долларов, что в шесть раз превосходит показатели 2004 года. Согласно докладу МАЭ, посвященному перспективам развития мировой энергетики, ожидается, что доля возобновляемых энергоресурсов, обеспечивающих потребность в первичной энергии, возрастет на 8% к 2030 году.

Стабилизация напряжения за счет возобновляемых энергоносителей, традиционно используемая в трансформаторах высокого и среднего напряжения, в настоящее время будет востребована в электросетях среднего и низкого напряжения для обеспечения локальной стабилизации.

Ключевыми движущими силами для роста доли возобновляемых энергоресурсов являются предоставление правительством льгот и снижение затрат на производство. В 2011 году
стоимость фотоэлектрических модулей упала на 50%, стоимость ветряных турбин уменьшилась на 10%. Это сократило разницу в ценах между возобновляемыми источниками и ископаемыми энергоносителями. Если эта тенденция продолжится, то согласно МАЭ к 2020 году или даже раньше будет достигнут сетевой паритет, который позволит технологиям, использующим солнечную энергию, конкурировать на рынке с традиционными ископаемыми энергоносителями.

Затраты на оборудование с учетом всего срока службы

Чтобы определиться, инвестировать или нет, обычно производят расчеты окупаемости вложений, которые должны принимать во внимание не только стоимость отдельного оборудования, но и предполагаемые расходы в течение всего срока его эксплуатации. Затраты на оборудование предполагают первоначальные затраты при его покупке, затраты, связанные с его установкой, управлением, техническим обслуживание и утилизацией, также нужно учитывать затраты на энергопотери. Несмотря на то, что трансформаторы относятся к приборам, обеспечивающим высокий КПД – обычно более 99%, энергетические потери сводятся к приличным финансовым затратам, которые значительно превышают первоначальные. В такой ситуации энергокомпании все чаще используют специально разработанный метод, получивший название общая стоимость издержек (TOC) для того, чтобы определить окупаемость инвестиций. Этот показатель выражает величины потерь на холостом ходу и при нагрузке в денежном эквиваленте. В основном эти величины зависят от затрат на электроэнергию и условий инвестирования предприятия.

Одной из основных задач объединения различных источников генерирования электрической энергии является влияние на качество электроэнергии, особенно полосы напряжения, охватывающей разноплановые местные генераторы и технические условия сетевой нагрузки. В прошлом электроснабжение имело централизованный характер благодаря однонаправленному потоку электроэнергии, и основной проблемой были спады напряжения. Тем не менее, в настоящее время, а в будущем еще в большей степени в связи с применением различных источников генерирования электроэнергии, электропоток становится все более сложным, что ведет не только к спаду напряжения, но его скачкам. А это представляет собой новый уровень регулирования напряжения: традиционно стабилизация напряжения применялась в высоко- и средневольтных трансформаторах, сейчас она необходима и в средне- и низковольтных электросетях для обеспечения местной стабилизации.

Системный контроль

Еще одним развивающимся направлением является системный контроль за распределение электроэнергии, который позволяет операторам организовать надежную распределительную сеть и определять проблемы прежде, чем произойдет поломка. Можно легко установить вид неисправностей и их расположение и сократить время аварийного простоя.
Традиционно трансформаторы распределительной сети считались пассивными элементами оборудования, но в будущем им отведена более активная роль в обеспечении сетей надежностью и эффективностью.

Перспективы на будущее

Рост населения и увеличение потребления энергии – это главные причины выброса углекислого газа, следствием которого являются нежелательные изменения в климате. Для того, чтобы не допустить дальнейшее распространение этого негативного процесса, необходимо использовать энергосберегающие компоненты в электросетях и вводить технологии с низким содержанием углерода.

Московский государственный институт международных отношений (У) МИД России

кафедра мировой экономики

Доклад на тему
«Энергетическая проблема мира и пути её решения»

Работу выполнила: студентка 11 группы I курса факультета МЭО
Бадовская Н.В.
Научный руководитель: Комиссарова Ж.Н.

Москва
2006

Всё живое на Земле нуждается в энергии. Однако помимо биологических нужд, человечество по мере технического и научного прогресса становится всё боле уязвимо в своей зависимости от внешних источников энергии, необходимых для производства множества товаров и услуг. В целом, энергия позволяет людям жить в меняющихся природных условиях и условиях большой плотности населения, а также контролировать своё окружение. Степень такой зависимости определяется многими факторами – начиная климатом и заканчивая уровнем жизни в данной стране: очевидно, что чем комфортнее человек делает свою жизнь, тем больше он зависит от внешних источников энергии. Великолепным примером такой зависимости может стать США, по словам Дж. Буша, «пристрастившиеся к нефти, импортируемой из нестабильных регионов», и Европа, практически всецело полагающаяся на поставки энергоресурсов из России. Новые технологии позволяют снизить потребление энергии, сделать его более разумным и применять новейшие, наиболее эффективные способы её получения и использования.

Но потребление любых энергоресурсов имеет пределы количественного расширения. К началу XXI века многие вопросы уже достигли общемирового значения. Запасы одних из самых важных полезных ископаемых – нефти и газа – постепенно приближаются к истощению, а полное их исчерпание может произойти уже в ближайшее столетие.

Тесно связаны с энергетикой также экологические проблемы, сопряжённые со сказывающимся влиянием использования и переработки энергии, – в первую очередь, климатические изменения.

Таким образом, вопрос энергетики – одна из важнейших составляющих более глубокой и всеобъемлющей проблемы дальнейшего развития человечества, поэтому на сегодняшний день как никогда остро стоит задача найти новые выгодные источники энергии.

В настоящее время для производства энергии наиболее широко используются топливные ресурсы, обеспечивая около 75% её мировой выработки. О их преимуществах можно много говорить – они относительно локализованы в нескольких крупных скоплениях, легки в эксплуатации и дают дешёвую энергию (если, конечно, не учитывать ущерб от загрязнения). Но есть и ряд серьёзных недостатков:

    Запасы топливных ресурсов уже в обозримом будущем истощатся, что приведёт к тяжёлым последствиям для стран, зависящих от них.

    Добыча полезных ископаемых становится более тяжёлой, дорогой и опасной по мере того, как мы используем самые доступные бассейны.

    Нефтяная зависимость привела к фактической монополизации, войнам и социально-политической дестабилизации.

    Добыча полезных ископаемых вызывает тяжёлые экологические проблемы.

Одним из перспективных направлений энергетики является ядерная энергетика.

В атомных электростанциях электричество вырабатывается в ходе реакций ядерного распада, сопровождающихся огромным выделением энергии при сжигании относительно небольшого количества топлива. При данном уровне потребления исследованных месторождений урана хватит более чем на 5 000 000 000 лет – за это время успеет сгореть даже наше Солнце.

Вероятность катастроф и аварий на АЭС несколько сдерживает развитие этой отрасли, вызывая недоверие общественности к ядерной энергетике. Однако в исторической перспективе аварии на тепло- и гидроэлектростанциях стали причиной смерти куда большего количества людей, не говоря уже об ущербе экологии.

Ещё одним способом получения энергии, волнующим умы учёных уже не первое десятилетие, является ядерный синтез. При ядерном синтезе выделяется в сотни раз больше энергии, чем при распаде, а запасов топлива для таких реакторов хватит на многие миллиарды лет. Однако подобную реакцию пока что не удаётся поставить под контроль, и появление первых таких установок ожидается не ранее 2050 года.

Альтернативу этим видам энергоресурсов, возможно, смогут составить возобновляемые источники: гидроэнергия, энергия ветра и приливных волн, солнечная, геотермальная, термальная энергия вод океана и биоэнергия.

До промышленной революции возобновляемые ресурсы были основным источником энергии. Твёрдое биотопливо – к примеру, дерево – всё ещё сохраняет своё значение для бедного населения развивающихся стран.

Биомасса (сжигание органических материалов для генерирования энергии), биотопливо (переработка биоматериалов для синтеза этанола) и биогаз (анаэробная переработка биологически отходов) – ещё одни возобновляемые источники энергии, которые не стоит сбрасывать со счёта. Они не могут обеспечить производства энергии в глобальных масштабах, однако способны вырабатывать до 10 МВ/ч. К тому же они могут покрыть расходы на утилизацию биоотходов.

Гидроэнергия – единственный возобновляемый источник энергии из используемых в наше время, обеспечивающий значительную долю мирового производства энергии. Потенциал гидроэнергетики раскрыт незначительно, в долгосрочной перспективе объёмы получаемой энергии возрастут в 9-12 раз. Однако строительству новых дамб препятствуют сопряжённые с этим экологические нарушения. В этой связи возрастает интерес к проектам мини-гидроэлектростанций, которым удаётся избежать многих проблем больших дамб.

Солнечные батареи сегодня могут преобразовать около 20% поступающей солнечной энергии в электричество. Однако если создавать особые «светосборники» и занять ими хотя бы 1% земель, используемых под сельхозугодия, это могло бы покрыть всё современное энергопотребление. Причём производительность такого солнечного коллектора от 50 до 100 раз больше, чем производительность средней ГЭС. Солнечные батареи могут быть установлены и на свободной поверхности существующих промышленных инфраструктур, что позволит избежать изъятия земель у парковых и посевных площадей. В данный момент правительство Германии проводит подобную программу, за которой с интересом наблюдают прочие страны.

Благодаря исследованиям удалось выяснить, что фермы водорослей могут улавливать до 10%, термальные солнечные коллекторы – до 80% солнечной энергии, которая впоследствии может быть использована в различных целях.

Энергия ветра на сегодняшний день является одним из самых дешёвых возобновляемых источников. Потенциально она может обеспечить в пять раз больше энергии, чем потребляется в мире сегодня, или 40 раз перекрыть потребность в электричестве. Для этого потребуется занять ветряными электростанциями 13% всей суши, а именно те районы, где особенно сильны движения воздушных масс.

Скорости ветра в море примерно на 90% превосходят скорости ветра на суше, а это значит, что морские ветряные установки могут вырабатывать куда больше энергии.

Такой способ получения энергии также возымел бы действие на экологию, смягчая парниковый эффект.

Геотермальная энергия, термальная энергия океана и энергия приливных волн – единственные на данный момент возобновляемые источники, не зависящие от солнца, однако они «сосредоточены» в определённых областях. Вся доступная энергия приливов может обеспечить около четверти современного энергопотребления. В настоящее время существуют масштабные проекты создания приливных электростанций.

Геотермальная энергия имеет огромный потенциал, если принимать в расчет всё тепло, заключённое внутри Земли, хотя тепло, выходящее на поверхность, составляет 1/20 000 от той энергии, что мы получаем от Солнца, или около 2-3 раз больше энергии приливов.

На данном этапе главными потребителями геотермальной энергии являются Исландия и Новая Зеландия, хотя виды на такого рода разработки имеют многие страны.

Рассмотренные виды энергоресурсов отнюдь не лишены недостатков.

Применение большинства технологий, связанных с использованием возобновляемых ресурсов, требует больших затрат, и нередко локация таких станций крайне неудобна, что в конечном итоге делает эти источники нерентабельными и недоступными для потребителя. С другой стороны, многие источники позволяют создавать небольшие производства, расположенные в непосредственной близости от потребителя энергии, как, например, солнечные батареи.

Ещё одной проблемой является негативное воздействие на окружающую среду. К примеру, строительство плотин, как ни странно, способствует парниковому эффекту – разлагающаяся органика затопленных районов выделяет углекислый газ. В целом страдает вся экосистема перекрываемой реки.

Помимо геотермальных и гидроэлектрических ресурсов, которые обладают определённой спецификой местоположения, прочие альтернативные источники энергии зачастую оказываются более дорогими и неудобными в использовании, чем привычные топливные ископаемые. Пожалуй, единственной областью их применения остаются отдалённые районы с неразвитой инфраструктурой, где дешевле оказывается строить ветряные и прочие станции, чем подвозить топливо морем или сушей, а также малоразвитые регионы Земли.

Иной путь решения энергетической проблемы – это интенсификация. Новые технологии позволяют полнее использовать доступную энергию, повышая эффективность оборудования – например, более эффективные флуоресцентные лампы, двигатели, изоляционные материалы. Тепло, которое тратится впустую, уходя в окружающую среду, посредством теплообменников может быть использовано для нагревания воды и центрального отопления зданий.

Уже существующие электростанции могут работать более продуктивно при минимуме затрат и преобразований благодаря новым технологиям. Новые электростанции можно сделать более эффективными при помощи таких технологий, как «когенерирование». Новые архитектурные решения могут включать использование солнечных коллекторов. Светодиоды постепенно заменяют устаревшие электрические лампочки. Естественно, ни один из этих методов не предлагает технологии вечного двигателя, и часть энергии всегда уходит «на обогрев».

В отдалённом будущем огромное количество новых источников энергии могут принести исследовании космоса, хотя вряд ли они актуальны при решении сегодняшних проблем энергетики.

В ближайшей же перспективе мы можем позволить себе гелиоэнергетические орбитальные станции, 24 часа в сутки собиравшие бы энергию солнца и передававшие бы её на Землю посредством микроволн. Фундаментальные исследования в этой области позволят в дальнейшем сделать такой вид получения энергии рентабельным и конкурентоспособным в сравнении с земными источниками.

Ядерное топливо теоретически можно добывать на астероидах, однако технические препятствия бурению скважин на астероидах гораздо тяжелее преодолеть, чем трудности, связанные с использованием огромных запасов урана-238 на Земле.

Другая интересная возможность – это добыча изотопа гелия-3, недоступного на Земле, на Луне. Этот вид топлива может быть использован в особом виде реакций распада, имеющих преимущества по сравнению с расщеплением обычного урана.

Ну, а в самом отдалённом будущем, человечество, освоившееся в космосе, будет обладать огромным выбором энергоресурсов. И тогда, вероятно, оно сможет использовать гигантский потенциал Чёрных дыр, о возможности чего учёные задумываются уже сейчас.

Дальнейшее развитие энергетики в любом случае столкнётся с трудностями: растущим населением, удовлетворением запросов более высокого уровня жизни, требованием более экологически чистого производства и исчерпанием полезных ископаемых. Для того, чтобы избежать энергетических кризисов, нужно помнить следующее:

    решение энергетической проблемы невозможно без обращения пристального внимания на экологический аспект;

    только комплексный подход, предусматривающий более эффективное использование как уже известных, так и альтернативных источников, позволит в дальнейшем удовлетворить потребность человечества в электроэнергии;

    разработка и внедрение новых технологий позволят открыть доступ к новым источникам энергии, недоступным на сегодняшний день.

В заключение хотелось бы привести слова секретаря Департамента Энергетики США Самюэля Бодмана: «На сегодня мировая экономика для того, чтобы развиваться, нуждается в нефти. Нам же необходимы пути достижения её роста, которые одновременно уменьшали бы нашу зависимость от топливных ископаемых и расширяли бы использование более чистых и надёжных источников энергии. Если говорить коротко, нам нужно разнообразие. Оно не будет дешевле или проще, но оно необходимо. В сущности, всё зависит от него. Поэтому надо просто его обеспечить».

Сегодня человеческая цивилизация может существовать, толь­ко производя и потребляя огромный, постоянно возрастающий объем энергии. До начала промышленной революции на рубеже XVIII-XIX вв. люди пользовались практически только возобновляемыми источниками энергии - энергией воды, ветра, растительного топлива.

Индустриаль­ное технологическое развитие потребовало преимущественно невозоб­новляемых энергоресурсов - сначала угля, а затем нефти и газа. И уголь, и нефть, и газ представляют собой углеводородное топливо, используе­мое в промышленном и сельскохозяйственном производстве, на транс­порте, в быту. Поэтому мировая энергетика XX и начала XXI столетия была и остается в значительной степени углеводородной.

Все виды углеводородного сырья содержатся в земных недрах пусть и в огромных, но все же ограниченных количествах, и могут быть ис­черпаны. Члены Римского клуба еще в 60-х годах XX в. поставили во­прос: что же будет с человечеством после наступления этой гипотети­ческой возможности?

Сегодня суть глобальной энергетической проблемы заключается в следующем. Потребление энергии в мире продолжало расти все послед­ние десятилетия, например, за 1980-2005 гг. оно выросло на 60%, а, по предварительным расчетам, к 2030 г. вырастет еще на 50%. Пока в миро­вом энергетическом балансе углеводородные источники энергии преоб­ладают, хотя отмечается рост потребления и других источников. По срав­нению с 70-ми годами XX в. в середине первого десятилетия XXI в. доля ядерной энергетики увеличилась в 6 раз, а гидроэнергетики - в 1,5 раза. Доля энергии, получаемой за счет использования нефти, за этот же пе­риод снизилась с 46,1% до 34,4 %. Однако в энергобалансе разных стран и регионов мира роль нефти как источника энергии неодинакова. Если в Северной и Южной Америке, Африке и особенно на Ближнем Востоке она выше среднемирового значения, то в Европе, на постсоветском про­странстве и в Азиатско-Тихоокеанском регионе доля нефти не превы­шает 30% от всех используемых источников энергии.

Возникновение глобальной энергетической проблемы связывали с фактором истощения мировых разведанных запасов нефти. Но в ре­альности параллельно с ростом объемов потребления и добычи нефти росли и объемы ее разведанных запасов. По данным за 1989 г., таких разведанных запасов должно было хватить на 42 года. Но и в 2007 г., когда добыча нефти существенно увеличилась, по оценкам специали­стов, разведанных запасов должно было хватить на те же 42 года. Это было связано с совершенствованием методов и технологий разведки и добычи нефти, освоением новых нефтеносных районов. Сегодня по-прежнему добывается и потребляется так называемая «дешевая нефть», залегающая в доступных для современной техники пластах. Такую нефть называют «конвенциальной» в противоположность «неконвенциальной», залегающей на больших глубинах, содержащейся в нефтя­ных песках, битумных сланцах. При современных технологиях добыча неконвенциальной нефти нерентабельна и в больших объемах не ве­дется. Разработка месторождений такой нефти дело будущего, может быть, не очень далекого. Пока нужды человечества обеспечивает конвенциальная нефть. Но доступность ее источников в разных странах также неодинакова. В экономически наиболее развитых странах мира доступность запасов дешевой нефти уменьшается, и зависимость таких стран от ее импорта возрастает даже при сокращении объемов потре­бления данного энергоносителя.

Постоянно растет потребление нефти в двух наиболее населенных странах мира - Китае и Индии. Причем обе страны не обладают соб­ственными большими разведанными запасами нефти и становятся весь­ма крупными ее импортерами. За первое десятилетие нынешнего сто­летия потребление нефти в Китае выросло в два, а в Индии в полтора раза. Пока доля нефти в энергобалансе Китая и Индии невелика, но она будет неуклонно расти хотя бы вследствие роста автопарка этих стран. Еще недавно КНР не производила собственных легковых автомобилей, сегодня же по их производству Китай отстает только от США и, вполне вероятно, вскоре их обгонит.

Все больше произведенных в стране авто­мобилей продается на внутреннем рынке. Меньшими темпами, но также неуклонно возрастает уровень автомобилизации Индии. Китайский и индийский факторы будут влиять на мировые цены на нефть, и эти стра­ны будут проявлять все больший интерес к потенциальным источникам этого энергоносителя в самых различных регионах.

На мировом нефтяном рынке, а следовательно, в мировой поли­тике, кроме стран Ближнего Востока, будет расти роль многих стран Африки, Латинской Америки и постсоветского пространства. По мере истощения источников конвенциальной нефти на суше возрастающий геополитический и экономический интерес будет вызывать морской шельф, а также Арктический бассейн, в недрах которого сосредоточе­ны крупные запасы углеводородов, причем не только нефти, но и газа.

До сих пор газ имел повышенное значение для экономики и энер­гетики отдельных стран мира. Если в странах Ближнего Востока на долю газа приходится 45% энергопотребления, в странах Европы и на постсоветском пространстве - 30%, то в АТР только 10%. Между тем газ имеет преимущество перед другими углеводородами, поскольку он более экологичен, чем нефть и особенно уголь.

Наиболее крупным месторождением природного газа обладает Россия, на долю которой приходится 25% его мировых разведанных запасов. Другими крупными «газовыми державами» являются Иран и Катар. Кроме них, на мировом газовом рынке заметную роль играют Алжир, Ливия, Азербайджан, Казахстан, Оман и ряд других стран.

По сравнению с нефтью транспортировка газа является более сложной. Большая часть нефти доставляется потребителям по трубо­проводам, в то время как пути транспортировки газа более диверсифи­цированы. Положение может измениться еще более в случае широкого использования технологий по сжижению газа, которые пока остаются дорогостоящими и мало распространенными. Однако, по оценкам спе­циалистов, запасов газа должно хватить на гораздо больший срок, чем запасов нефти.

Еще более обширны разведанные мировые запасы угля. Именно уголь пока остается основным видом энергоресурсов, используемых в АТР. Там его доля в энергобалансе составляет 50%. А в КНР данный по­казатель достигает 70%. Главная проблема заключается в том, что при сжигании угля в атмосферу выбрасывается огромное количество вред­ных веществ. Пока уголь - наиболее «грязный» из всех видов углеводо­родного топлива. Хотя ситуация постепенно меняется, появляются более экологичные и экономически более привлекательные технологии его использования, особенно в энергетике. По прогнозам специали­стов, через двадцать лет объем вырабатываемой за счет использования угля электроэнергии вырастет в два раза. Однако речь не идет о том, чтобы углем заменить другие углеводороды - нефть и газ.

В отличие от алармистских прогнозов Римского клуба, современ­ный взвешенный взгляд на перспективы решения глобальной энерге­тической проблемы более оптимистичен. Вновь повышается интерес к атомной энергетике. Если же будут разработаны экономически рен­табельные технологии получения промышленных объемов энергии за счет термоядерного синтеза, то человечество получит практически неисчерпаемый источник электроэнергии. Термоядерная энергетика может быть дополнена водородной энергетикой, которой прочат боль­шое будущее. Так или иначе, нынешним источникам энергии через не­сколько десятилетий будет найдена вполне эффективная замена. Но на протяжении первой половины XXI в. энергетическая проблема будет существовать как на глобальном, так и на региональном уровне миро­вой политики. Сегодня обостряются споры вокруг путей обеспечения энергетической безопасности. При том, что сама необходимость тако­го обеспечения ни у кого не вызывает сомнения. Представления же о способах и путях достижения данной цели у экспертов и потребителей энергоресурсов разные.

Министерство сельского хозяйства и продовольствия Российской Федерации

ФГОУ ВПО Уральская государственная сельскохозяйственная академия

Кафедра экологии и зоогигиены

Реферат по экологии:

Энергетические проблемы человечества

Исполнитель: ANTONiO

студент ФТЖ 212Т

Руководитель: Лопаева

Надежда Леонидовна

Екатеринбург 2007


Введение. 3

Энергетика: прогноз с позиции устойчивого развития человечества. 5

Нетрадиционные источники энергии. 11

Энергия Солнца. 12

Ветровая энергия. 15

Термальная энергия земли. 18

Энергия внутренних вод. 19

Энергия биомассы.. 20

Заключение. 21

Литература. 23


Введение

Сейчас, как никогда остро встал вопрос, о том, каким будет будущее планеты в энергетическом плане. Что ждет человечество - энергетический голод или энергетическое изобилие? В газетах и различных журналах все чаще и чаще встречаются статьи об энергетическом кризисе. Из-за нефти возникают войны, расцветают и беднеют государства, сменяются правительства. К разряду газетных сенсаций стали относить сообщения о запуске новых установок или о новых изобретениях в области энергетики. Разрабатываются гигантские энергетические программы, осуществление которых потребует громадных усилий и огромных материальных затрат.

Если в конце XIX века энергия играла, в общем, вспомогательную и незначительную в мировом балансе роль, то уже в 1930 году в мире было произведено около 300 миллиардов киловатт-часов электроэнергии. С течением времени - гигантские цифры, огромные темпы роста! И все равно энергии будет мало - потребности в ней растут еще быстрее. Уровень материальной, а, в конечном счёте, и духовной культуры людей находится в прямой зависимости от количества энергии, имеющейся в их распоряжении.

Чтобы добыть руду, выплавить из нее металл, построить дом, сделать любую вещь, нужно израсходовать энергию. А потребности человека все время растут, да и людей становится все больше. Так за чем же остановка? Ученые и изобретатели уже давно разработали многочисленные способы производства энергии, в первую очередь электрической. Давайте тогда строить все больше и больше электростанций, и энергии будет столько, сколько понадобится! Такое, казалось бы, очевидное решение сложной задачи, оказывается, таит в себе немало подводных камней. Неумолимые законы природы утверждают, что получить энергию, пригодную для использования, можно только за счет ее преобразований из других форм.

Вечные двигатели, якобы производящие энергию и ниоткуда ее не берущие, к сожалению, невозможны. А структура мирового энергохозяйства к сегодняшнему дню сложилась таким образом, что четыре из каждых пяти произведенных киловатт получаются в принципе тем же способом, которым пользовался первобытный человек для согревания, то есть при сжигании топлива, или при использовании запасенной в нем химической энергии, преобразовании ее в электрическую на тепловых электростанциях.

Правда, способы сжигания топлива стали намного сложнее и совершеннее. Возросшие требования к защите окружающей среды потребовали нового подхода к энергетике. В разработке Энергетической программы приняли участие виднейшие ученые и специалисты различных сфер. С помощью новейших математических моделей электронно-вычислительные машины рассчитали несколько сотен вариантов структуры будущего энергетического баланса. Были найдены принципиальные решения, определившие стратегию развития энергетики на грядущие десятилетия. Хотя в основе энергетики ближайшего будущего по-прежнему останется теплоэнергетика на не возобновляемых ресурсах, структура ее изменится. Должно сократиться использование нефти. Существенно возрастет производство электроэнергии на атомных электростанциях.

Энергетика: прогноз с позиции устойчивого развития человечества

Согласно каким законам будет развиваться энергетика мира в будущем, исходя из ООНовской Концепции устойчивого развития человечества? Результаты исследований иркутских ученых, сопоставление их с работами других авторов позволили установить ряд общих закономерностей и особенностей.

Концепция устойчивого развития человечества, сформулированная на Конференции ООН 1992 г. в Рио-де-Жанейро, несомненно, затрагивает и энергетику. На Конференции показано, что человечество не может продолжать развиваться традиционным путем, который характеризуется нерациональным использованием природных ресурсов и прогрессирующим негативным воздействием на окружающую среду. Если развивающиеся страны пойдут тем же путем, каким развитые страны достигли своего благополучия, то глобальная экологическая катастрофа будет неизбежна.

В основе концепции устойчивого развития лежит объективная необходимость (а также право и неизбежность) социально-экономического развития стран третьего мира. Развитые страны могли бы, по-видимому, "смириться" (по крайней мере, на какое-то время) с достигнутым уровнем благосостояния и потребления ресурсов планеты. Однако речь идет не просто о сохранении окружающей среды и условий существования человечества, но и об одновременном повышении социально-экономического уровня развивающихся стран ("Юга") и приближении его к уровню развитых стран ("Севера").

Требования к энергетике устойчивого развития будут, конечно, шире, чем к экологически чистой энергетике. Требования неисчерпаемости используемых энергетических ресурсов и экологической чистоты, заложенные в концепции экологически чистой энергетической системы, удовлетворяют двум важнейшим принципам устойчивого развития - соблюдение интересов будущих поколений и сохранение окружающей среды. Анализируя остальные принципы и особенности концепции устойчивого развития, можно заключить, что к энергетике в данном случае следует предъявить, как минимум, два дополнительных требования:

Обеспечение энергопотребления (в том числе, энергетических услуг населению) не ниже определенного социального минимума;

Развитие национальной энергетики (так же, как и экономики) должно быть взаимно скоординировано с развитием ее на региональном и глобальном уровнях.

Первое вытекает из принципов приоритета социальных факторов и обеспечения социальной справедливости: для реализации права людей на здоровую и плодотворную жизнь, уменьшения разрыва в уровне жизни народов мира, искоренения бедности и нищеты, необходимо обеспечить определенный прожиточный минимум, в том числе, удовлетворение минимально необходимых потребностей в энергии населения и экономики.

Второе требование связано с глобальным характером надвигающейся экологической катастрофы и необходимостью скоординированных действий всего мирового сообщества по устранению этой угрозы. Даже страны, имеющие достаточные собственные энергетические ресурсы, как, например, Россия, не могут изолированно планировать развитие своей энергетики из-за необходимости учитывать глобальные и региональные экологические и экономические ограничения.

В 1998--2000 гг. в ИСЭМ СО РАН проведены исследования перспектив развития энергетики мира и его регионов в XXI веке, в которых наряду с обычно ставящимися целями определения долгосрочных тенденций в развитии энергетики, рациональных направлений НТП и т.п. сделана попытка проверки получаемых вариантов развития энергетики "на устойчивость", т.е. на соответствие условиям и требованиям устойчивого развития. При этом в отличие от вариантов развития, разрабатывавшихся ранее по принципу "что будет, если...", авторы попытались предложить по возможности правдоподобный прогноз развития энергетики мира и его регионов в XXI веке. При всей его условности дается более реалистичное представление о будущем энергетики, ее возможном влиянии на окружающую среду, необходимых экономических затратах и др.

Общая схема этих исследований в значительной мере традиционна: использование математических моделей, для которых готовится информация по энергетическим потребностям, ресурсам, технологиям, ограничениям. Для учета неопределенности информации, в первую очередь по потребностям в энергии и ограничениям, формируется набор сценариев будущих условий развития энергетики. Результаты расчетов на моделях затем анализируются с соответствующими выводами и рекомендациями.

Основным инструментом исследований являлась Глобальная энергетическая модель GEM-10R. Эта модель - оптимизационная, линейная, статическая, многорегиональная. Как правило, мир делился на 10 регионов: Северная Америка, Европа, страны бывшего СССР, Латинская Америка, Китай и др. Модель оптимизирует структуру энергетики одновременно всех регионов с учетом экспорта-импорта топлива и энергии по 25-летним интервалам - 2025, 2050, 2075 и 2100 гг. Оптимизируется вся технологическая цепочка, начиная с добычи (или производства) первичных энергоресурсов, кончая технологиями производства четырех видов конечной энергии (электрической, тепловой, механической и химической). В модели представлено несколько сот технологий производства, переработки, транспорта и потребления первичных энергоресурсов и вторичных энергоносителей. Предусмотрены экологические региональные и глобальные ограничения (на выбросы СО 2 , SO 2 и твердых частиц), ограничения на развитие технологий, расчет затрат на развитие и функционирование энергетики регионов, определение двойственных оценок и др. Первичные энергетические ресурсы (в том числе, возобновляемые) в регионах задаются с разделением на 4-9 стоимостных категорий.

Анализ результатов показал, что полученные варианты развития энергетики мира и регионов по-прежнему трудно реализуемы и не вполне отвечают требованиям и условиям устойчивого развития мира в социально-экономических аспектах. В частности, рассматривавшийся уровень энергопотребления представился, с одной стороны, трудно достижимым, а с другой стороны - не обеспечивающим желаемого приближения развивающихся стран к развитым по уровню душевого энергопотребления и экономического развития (удельному ВВП). В связи с этим был выполнен новый прогноз энергопотребления (пониженного) в предположении более высоких темпов снижения энергоемкости ВВП и оказания экономической помощи развитых стран развивающимся.

Высокий уровень энергопотребления определен исходя из удельных ВВП, в основном соответствующих прогнозам Мирового банка. При этом в конце XXI века развивающиеся страны достигнут лишь современного уровня ВВП развитых стран, т.е. отставание составит около 100 лет. В варианте низкого энергопотребления размер помощи развитых стран развивающимся принят исходя из обсуждавшихся в Рио-де-Жанейро показателей: около 0,7 % ВВП развитых стран, или 100-125 млрд дол. в год. Рост ВВП развитых стран при этом несколько уменьшается, а развивающихся - увеличивается. В среднем же по миру душевой ВВП в этом варианте увеличивается, что свидетельствует о целесообразности оказания такой помощи с точки зрения всего человечества.

Душевое потребление энергии в низком варианте в промышленно развитых странах стабилизируется, в развивающихся - возрастет к концу века примерно в 2,5 раза, а в среднем по миру - в 1,5 раза по сравнению с 1990 г. Абсолютное мировое потребление конечной энергии (с учетом роста населения) увеличится к концу начавшегося столетия по высокому прогнозу примерно в 3,5 раза, по низкому - в 2,5 раза.

Использование отдельных видов первичных энергоресурсов характеризуется следующими особенностями. Нефть во всех сценариях расходуется примерно одинаково - в 2050 г. достигается пик ее добычи, а к 2100 г. дешевые ресурсы (первых пяти стоимостных категорий) исчерпываются полностью или почти полностью. Такая устойчивая тенденция объясняется большой эффективностью нефти для производства механической и химической энергии, а также тепла и пиковой электроэнергии. В конце века нефть замещается синтетическим топливом (в первую очередь, из угля).

Добыча природного газа непрерывно увеличивается в течение всего века, достигая максимума в его конце. Две наиболее дорогие категории (нетрадиционный метан и метаногидраты) оказались неконкурентоспособными. Газ используется для производства всех видов конечной энергии, но в наибольшей степени - для производства тепла.

Уголь и ядерная энергия подвержены наибольшим изменениям в зависимости от вводимых ограничений. Будучи примерно равноэкономичными, они замещают друг друга, особенно в "крайних" сценариях. В наибольшей мере они используются на электростанциях. Значительная часть угля во второй половине века перерабатывается в синтетическое моторное топливо, а ядерная энергия в сценариях с жесткими ограничениями на выбросы СО 2 в больших масштабах используется для получения водорода.

Использование возобновляемых источников энергии существенно различается в разных сценариях. Устойчиво используются лишь традиционные гидроэнергия и биомасса, а также дешевые ресурсы ветра. Остальные виды ВИЭ являются наиболее дорогими ресурсами, замыкают энергетический баланс и развиваются по мере необходимости.

Интересно проанализировать затраты на мировую энергетику в разных сценариях. Меньше всего они, естественно, в двух последних сценариях с пониженным энергопотреблением и умеренными ограничениями. К концу века они возрастают примерно в 4 раза по сравнению с 1990 г. Наибольшие затраты получились в сценарии с повышенным энергопотреблением и жесткими ограничениями. В конце века они в 10 раз превышают затраты 1990 г. и в 2,5 раза - затраты в последних сценариях.

Следует отметить, что введение моратория на ядерную энергетику при отсутствии ограничений на выбросы СО 2 увеличивает затраты всего на 2 %, что объясняется примерной равноэкономичностью АЭС и электростанций на угле. Однако, если при моратории на ядерную энергетику ввести жесткие ограничения на выбросы СО 2 , то затраты на энергетику возрастают почти в 2 раза.

Следовательно, "цены" ядерного моратория и ограничений на выбросы СО 2 очень велики. Анализ показал, что затраты на снижение выбросов СО 2 могут составить 1-2 % от мирового ВВП, т.е. они оказываются сопоставимыми с ожидаемым ущербом от изменения климата планеты (при потеплении на несколько градусов). Это дает основания говорить о допустимости (или даже необходимости) смягчения ограничений на выбросы СО 2 . Фактически требуется минимизировать сумму затрат на снижение выбросов СО 2 и ущербов от изменения климата (что, конечно, представляет исключительно сложную задачу).

Очень важно, что дополнительные затраты на уменьшение выбросов СО 2 должны нести, главным образом, развивающиеся страны. Между тем, эти страны, с одной стороны, не виновны в создавшемся с тепличным эффектом положении, а с другой - просто не имеют таких средств. Получение же этих средств от развитых стран, несомненно, вызовет большие трудности и это - одна из серьезнейших проблем достижения устойчивого развития.

В XXI веке мы трезво отдаём себе отчёт в реальностях третьего тысячелетия. К сожалению, запасы нефти, газа, угля отнюдь не бесконечны. Природе, чтобы создать эти запасы, потребовались миллионы лет, израсходованы они будут за сотни. Сегодня в мире стали всерьез задумываться над тем, как не допустить хищнического разграбления земных богатств. Ведь лишь при этом условии запасов топлива может хватить на века. К сожалению, многие нефтедобывающие страны живут сегодняшним днем. Они нещадно расходуют подаренные им природой нефтяные запасы. Что же произойдет тогда, а это рано или поздно случится, когда месторождения нефти и газа будут исчерпаны? Вероятность скорого истощения мировых запасов топлива, а также ухудшение экологической ситуации в мире, (переработка нефти и довольно частые аварии во время ее транспортировки представляют реальную угрозу для окружающей среды) заставили задуматься о других видах топлива, способных заменить нефть и газ.

Сейчас в мире все больше ученых инженеров занимаются поисками новых, нетрадиционных источников которые могли бы взять на себя хотя бы часть забот по снабжению человечества энергией. Нетрадиционные возобновляемые источники энергии включают солнечную, ветровую, геотермальную энергию, биомассу и энергию Мирового океана.

Энергия Солнца

В последнее время интерес к проблеме использования солнечной энергии резко возрос, и хотя этот источник также относится к возобновляемым, внимание, уделяемое ему во всем мире, заставляет нас рассмотреть его возможности отдельно. Потенциальные возможности энергетики, основанной на использовании непосредственно солнечного излучения, чрезвычайно велики. Заметим, что использование всего лишь 0,0125 % этого количества энергии Солнца могло бы обеспечить все сегодняшние потребности мировой энергетики, а использование 0.5 % - полностью покрыть потребности на перспективу. К сожалению, вряд ли когда-нибудь эти огромные потенциальные ресурсы удастся реализовать в больших масштабах. Одним из наиболее серьезных препятствий такой реализации является низкая интенсивность солнечного излучения.

Даже при наилучших атмосферных условиях (южные широты, чистое небо) плотность потока солнечного излучения составляет не более 250 Вт/м2. Поэтому, чтобы коллекторы солнечного излучения "собирали" за год энергию, необходимую для удовлетворения всех потребностей человечества нужно разместить их на территории 130 000 км 2 ! Необходимость использовать коллекторы огромных размеров, кроме того, влечет за собой значительные материальные затраты. Простейший коллектор солнечного излучения представляет собой зачерненный металлический лист, внутри которого располагаются трубы с циркулирующей в ней жидкостью. Нагретая за счёт солнечной энергии, поглощённой коллектором, жидкость поступает для непосредственного использования. Согласно расчетам изготовление коллекторов солнечного излучения площадью 1 км 2 , требует примерно 10 4 тонн алюминия. Доказанные же на сегодня мировые запасы этого металла оцениваются в 1.17*10 9 тонн.

Ясно, что существуют разные факторы, ограничивающие мощность солнечной энергетики. Предположим, что в будущем для изготовления коллекторов станет возможным применять не только алюминий, но и другие материалы. Изменится ли ситуация в этом случае? Будем исходить из того, что на отдельной фазе развития энергетики (после 2100 года) все мировые потребности в энергии будут удовлетворяться за счет солнечной энергии. В рамках этой модели можно оценить, что в этом случае потребуется "собирать" солнечную энергию на площади от 1*10 6 до 3*10 6 км 2 . В то же время общая площадь пахотных земель в мире составляет сегодня 13*10 6 км 2 . Солнечная энергетика относится к наиболее материалоёмким видам производства энергии. Крупномасштабное использование солнечной энергии влечет за собой гигантское увеличение потребности в материалах, а следовательно, и в трудовых ресурсах для добычи сырья, его обогащения, получения материалов, изготовление гелиостатов, коллекторов, другой аппаратуры, их перевозки. Подсчеты показывают, что для производства 1 МВт в год электрической энергии с помощью солнечной энергетики потребуется затратить от 10 000 до 40 000 человеко-часов.

В традиционной энергетике на органическом топливе этот показатель составляет 200-500 человеко-часов. Пока еще электрическая энергия, рожденная солнечными лучами, обходится намного дороже, чем получаемая традиционными способами. Ученые надеются, что эксперименты, которые они проведут на опытных установках и станциях, помогут решить не только технические, но и экономические проблемы.

Первые попытки использования солнечной энергии на коммерческой основе относятся к 80-м годам прошлого столетия. Крупнейших успехов в этой области добилась фирма Loose Industries (США). Ею в декабре 1989 года введена в эксплуатацию солнечно-газовая станция мощностью 80 МВт. Здесь же, в Калифорнии, в 1994 году было введено еще 480 МВт электрической мощности, причем, стоимость 1 кВт/ч энергии – 7-8 центов. Это ниже, чем на традиционных станциях. В ночные часы и зимой энергию дает, в основном, газ, а летом и в дневные часы – солнце. Электростанция в Калифорнии продемонстрировала, что газ и солнце, как основные источники энергии ближайшего будущего, способны эффективно дополнять друг друга. Поэтому не случаен вывод, что в качестве партнера солнечной энергии должны выступать различные виды жидкого или газообразного топлива. Наиболее вероятной “кандидатурой” является водород.

Его получение с использованием солнечной энергии, например, путем электролиза воды может быть достаточно дешевым, а сам газ, обладающий высокой теплотворной способностью, легко транспортировать и длительно хранить. Отсюда вывод: наиболее экономичная возможность использования солнечной энергии, которая просматривается сегодня – направлять ее для получения вторичных видов энергии в солнечных районах земного шара. Полученное жидкое или газообразное топливо можно будет перекачивать по трубопроводам или перевозить танкерами в другие районы. Быстрое развитие гелиоэнергетики стало возможным благодаря снижению стоимости фотоэлектрических преобразователей в расчете на 1 Вт установленной мощности с 1000 долларов в 1970 году до 3-5 долларов в 1997 году и повышению их КПД с 5 до 18%. Уменьшение стоимости солнечного ватта до 50 центов позволит гелиоустановкам конкурировать с другими автономными источниками энергии, например, с дизельэлектростанциями.

Ветровая энергия

Огромна энергия движущихся воздушных масс. Запасы энергии ветра более чем в сто раз превышают запасы гидроэнергии всех рек планеты. Ветры, дующие на просторах нашей страны, могли бы легко удовлетворить все ее потребности в электроэнергии! Климатические условия позволяют развивать ветроэнергетику на огромной территории от наших западных границ до берегов Енисея. Богаты энергией ветра северные районы страны вдоль побережья Северного Ледовитого океана, где она особенно необходима мужественным людям, обживающим эти богатейшие края. Почему же столь обильный, доступный да и экологически чистый источник энергии так слабо используется? В наши дни двигатели, использующие ветер, покрывают всего одну тысячную мировых потребностей в энергии. Техника XX века открыла совершенно новые возможности для ветроэнергетики, задача которой стала другой - получение электроэнергии. В начале века Н.Е. Жуковский разработал теорию ветродвигателя, на основе которой могли быть созданы высокопроизводительные установки, способные получать энергию от самого слабого ветерка. Появилось множество проектов ветроагрегатов, несравненно более совершенных, чем старые ветряные мельницы. В новых проектах используются достижения многих отраслей знания. В наши дни к созданию конструкций ветроколеса - сердца любой ветроэнергетической установки привлекаются специалисты-самолетостроители, умеющие выбрать наиболее целесообразный профиль лопасти, исследовать его в аэродинамической трубе. Усилиями ученых и инженеров созданы самые разнообразные конструкции современных ветровых установок.

Первой лопастной машиной, использовавшей энергию ветра, был парус. Парус и ветродвигатель кроме одного источника энергии объединяет один и тот же используемый принцип. Исследования Ю. С. Крючкова показали, что парус можно представить в виде ветродвигателя с бесконечным диаметром колеса. Парус является наиболее совершенной лопастной машиной, с наивысшим коэффициентом полезного действия, которая непосредственно использует энергию ветра для движения.

Ветроэнергетика, использующая ветроколеса и ветрокарусели, возрождается сейчас, прежде всего, в наземных установках. В США уже построены и эксплуатируются коммерческие установки. Проекты наполовину финансируются из государственного бюджета. Вторую половину инвестируют будущие потребители экологически чистой энергии.

Первые разработки теории ветродвигателя относятся к 1918 г. В. Залевский заинтересовался ветряками и авиацией одновременно. Он начал создавать полную теорию ветряной мельницы и вывел несколько теоретических положений, которым должна отвечать ветроустановка.

В начале ХХ века интерес к воздушным винтам и ветроколесам не был обособлен от общих тенденций времени – использовать ветер, где это только возможно. Первоначально наибольшее распространение ветроустановки получили в сельском хозяйстве. Воздушный винт использовали для привода судовых механизмов. На всемирно известном “Фраме” он вращал динамомашину. На парусниках ветряки приводили в движение насосы и якорные механизмы.

В России к началу прошлого века вращалось около 2500 тысяч ветряков общей мощностью миллион киловатт. После 1917 года мельницы остались без хозяев и постепенно разрушились. Правда, делались попытки использовать энергию ветра уже на научной и государственной основе. В 1931 году вблизи Ялты была построена крупнейшая по тем временам ветроэнергетическая установка мощностью 100 кВт, а позднее разработан проект агрегата на 5000 кВт. Но реализовать его не удалось, так как Институт ветроэнергетики, занимавшийся этой проблемой, был закрыт.

В США к 1940 году построили ветроагрегат мощностью в 1250 кВт. К концу войны одна из его лопастей получила повреждение. Ее даже не стали ремонтировать – экономисты подсчитали, что выгодней использовать обычную дизельную электростанцию. Дальнейшие исследования этой установки прекратились.

Неудавшиеся попытки использовать энергию ветра в крупномасштабной энергетике сороковых годов XX века не были случайны. Нефть оставалась сравнительно дешевой, резко снизились удельные капитальные вложения на крупных тепловых электростанциях, освоение гидроэнергии, как тогда казалось, гарантирует и низкие цены и удовлетворительную экологическую чистоту.

Существенным недостатком энергии ветра является ее изменчивость во времени, но его можно скомпенсировать за счет расположения ветроагрегатов. Если в условиях полной автономии объединить несколько десятков крупных ветроагрегатов, то средняя их мощность будет постоянной. При наличии других источников энергии ветрогенератор может дополнять существующие. И, наконец, от ветродвигателя можно непосредственно получать механическую энергию.

Термальная энергия земли

Издавна люди знают о стихийных проявлениях гигантской энергии, таящейся в недрах земного шара. Мощность извержения многократно превышает мощность самых крупных энергетических установок, созданных руками человека. Правда, о непосредственном использовании энергии вулканических извержений говорить не приходится - нет пока у людей возможностей обуздать эту непокорную стихию, да и, к счастью, извержения эти достаточно редкие события. Но это проявления энергии, таящейся в земных недрах, когда лишь крохотная доля этой неисчерпаемой энергии находит выход через огнедышащие жерла вулканов. Маленькая европейская страна Исландия полностью обеспечивает себя помидорами, яблоками и даже бананами! Многочисленные исландские теплицы получают энергию от тепла земли - других местных источников энергии в Исландии практически нет. Зато очень богата эта страна горячими источниками и знаменитыми гейзерами-фонтанами горячей воды, с точностью хронометра вырывающейся из-под земли. И хотя не исландцам принадлежит приоритет в использовании тепла подземных источников, жители этой маленькой северной страны эксплуатируют подземную котельную очень интенсивно.

Рейкьявик, в которой проживает половина населения страны, отапливается только за счет подземных источников. Но не только для отопления черпают люди энергию из глубин земли. Уже давно работают электростанции, использующие горячие подземные источники. Первая такая электростанция, совсем еще маломощная, была построена в 1904 году в небольшом итальянском городке Лардерелло. Постепенно мощность электростанции росла, в строй вступали все новые агрегаты, использовались новые источники горячей воды, и в наши дни мощность станции достигла уже внушительной величины - 360 тысяч киловатт. В Новой Зеландии существует такая электростанция в районе Вайракеи, ее мощность 160 тысяч киловатт. В 120 километрах от Сан-Франциско в США производит электроэнергию геотермальная станция мощностью 500 тысяч киловатт.

Энергия внутренних вод

Раньше всего люди научились использовать энергию рек. Но в золотой век электричества, произошло возрождение водяного колеса в виде водяной турбины. Электрические генераторы, производящие энергию, необходимо было вращать, а это вполне успешно могла делать вода. Можно считать, что современная гидроэнергетика родилась в 1891 году. Преимущества гидроэлектростанций очевидны - постоянно возобновляемый самой природой запас энергии, простота эксплуатации, отсутствие загрязнения окружающей среды. Да и опыт постройки и эксплуатации водяных колес мог бы оказать немалую помощь гидроэнергетикам.

Однако, чтобы привести во вращение мощные гидротурбины, нужно накопить за плотиной огромный запас воды. Для постройки плотины требуется уложить такое количество материалов, что объем гигантских египетских пирамид по сравнению с ним покажется ничтожным. В 1926 году в строй вошла Волховская ГЭС, в следующем началось строительство знаменитой Днепровской. Энергетическая политика нашей страны, привела к тому, что у нас развита система мощных гидроэлектрических станций. Ни одно государство не может похвастаться такими энергетическими гигантами, как Волжские, Красноярская и Братская, Саяно-Шушенская ГЭС. Энергоустановка на реке Ранс, состоящая из 24 реверсивных турбогенераторов, и имеющая выходную мощность 240 мегаватт - одна из наиболее мощных гидроэлектростанций во Франции. Гидроэлектростанции являются наиболее экономически выгодным источником энергии. Но имеют недостатки - при транспортировке электроэнергии по линиям электропередач происходят потери до 30% и создаётся экологически опасное электромагнитное излучение. Пока людям служит лишь небольшая часть гидроэнергетического потенциала земли. Ежегодно огромные потоки воды, образовавшиеся от дождей и таяния снегов, стекают в моря неиспользованными. Если бы удалось задержать их с помощью плотин, человечество получило бы дополнительно колоссальное количество энергии.

Энергия биомассы

В США в середине 70-х годов группа специалистов в области исследования океана, морских инженеров и водолазов создала первую в мире океанскую энергетическую ферму на глубине 12 метров под залитой солнцем гладью Тихого океана вблизи города Сан-Клемент. На ферме выращивались гигантские калифорнийские бурые водоросли. По мнению директора проекта доктора Говарда А. Уилкокса, сотрудника Центра исследования морских и океанских систем в Сан-Диего (Калифорния), "до 50 % энергии этих водорослей может быть превращено в топливо - в природный газ метан. Океанские фермы будущего, выращивающие бурые водоросли на площади примерно 100 000 акров (40 000 га), смогут давать энергию, которой хватит, чтобы полностью удовлетворить потребности американского города с населением в 50 000 человек".

К биомассе, кроме водорослей, можно также отнести и продукты жизнедеятельности домашних животных. Так, 16 января 1998 года в газете “Санкт Петербургские Ведомости” была напечатана статья, под названием “Электричество... из куриного помёта” в которой говорилось о том, что находящаяся в финском городе Тампере дочерняя фирма международного норвежского судостроительного концерна Kvaerner стремится получить поддержку ЕС для сооружения в британском Нортхэмптоне электростанции, действующей... на курином помете. Проект входит в программу EС Thermie, которая предусматривает развитие новых, нетрадиционных, источников энергии и методов сбережения энергетических ресурсов. Комиссия ЕС распределила 13 января 140 млн ЭКЮ среди 134 проектов.

Спроектированная финской фирмой силовая установка будет сжигать в топках 120 тысяч тонн куриного помета в год, вырабатывая 75 млн киловатт-часов энергии.

Заключение

Можно выделить ряд общих тенденций и особенностей в развитии энергетики мира в начавшемся столетии.

1. В XXI в. неизбежен значительный рост мирового потребления энергии, в первую очередь, в развиваюшихся странах. В промышленно развитых странах энергопотребление может стабилизироваться примерно на современном уровне или даже снизиться к концу века. По низкому прогнозу, сделанному авторами, мировое потребление конечной энергии может составить в 2050 г. 350 млн Тдж/год, в 2100 г. - 450 млн Тдж/год (при современном потреблении около 200 млн Тдж/год).

2. Человечество в достаточной мере обеспечено энергетическими ресурсами на XXI век, но удорожание энергии неизбежно. Ежегодные затраты на мировую энергетику возрастут в 2,5-3 раза к середине века и в 4-6 раз к концу его по сравнению с 1990 г. Средняя стоимость единицы конечной энергии увеличится в эти сроки, соответственно, на 20-30 и 40-80 % (увеличение цен на топливо и энергию может быть еще значительнее).

3. Введение глобальных ограничений на выбросы СО 2 (наиболее важного тепличного газа) очень сильно повлияет на структуру энергетики регионов и мира в целом. Попытки сохранения глобальных выбросов на современном уровне следует признать нереальными из-за трудно разрешимого противоречия: дополнительные затраты на ограничение выбросов СО 2 (около 2 трлн долл./год в середине века и более 5 трлн долл./год в конце века) должны будут нести преимущественно развивающиеся страны, которые, между тем, "не виновны" в создавшейся проблеме и не имеют необходимых средств; развитые же страны вряд ли захотят и смогут оплатить такие затраты. Реалистичным с точки зрения обеспечения удовлетворительных структур энергетики регионов мира (и затрат на ее развитие) можно считать ограничение во второй половине века глобальных выбросов СО 2 до 12-14 Гт С/год, т.е. до уровня примерно в два раза выше, чем было в 1990 г. При этом сохраняется проблема распределения квот и дополнительных затрат на ограничение выбросов между странами и регионами.

4. Развитие ядерной энергетики представляет наиболее эффективное средство снижения выбросов СО 2 . В сценариях, где вводились жесткие или умеренные ограничения на выбросы СО 2 и отсутствовали ограничения на ядерную энергетику, оптимальные масштабы ее развития получились чрезвычайно большими. Другим показателем ее эффективности явилась "цена" ядерного моратория, которая при жестких ограничениях на выбросы СО 2 выливается в 80-процентное увеличение затрат на мировую энергетику (более 8 трлн долл./год в конце XXI в.). В связи с этим были рассмотрены сценарии с "умеренными" ограничениями на развитие ядерной энергетики для поиска реально возможных альтернатив.

5. Непременное условие перехода к устойчивому развитию - помощь (финансовая, техническая) наиболее отсталым странам со стороны развитых стран. Для получения реальных результатов такая помощь должна быть оказана в самые ближайшие десятилетия, с одной стороны, для ускорения процесса приближения уровня жизни развивающихся стран к уровню развитых, а с другой - чтобы такая помощь еще могла составить заметную долю в быстро увеличивающемся суммарном ВВП развивающихся стран.

Литература

1. Еженедельная газета сибирского отделения российской академии наук N 3 (2289) 19 января 2001 г

2. Антропов П.Я. Топливно-энергетический потенциал Земли. М., 1994

3. Одум Г., Одум Е. Энергетический базис человека и природы. М., 1998