Последние статьи
Домой / Для брюнеток / Способ извлечения цинка и кадмия из водных растворов электролитов. Металлургия цинка и кадмия Рекомендованный список диссертаций

Способ извлечения цинка и кадмия из водных растворов электролитов. Металлургия цинка и кадмия Рекомендованный список диссертаций

Помощь

Каждый вопрос экзамена может иметь несколько ответов от разных авторов. Ответ может содержать текст, формулы, картинки. Удалить или редактировать вопрос может автор экзамена или автор ответа на экзамен.

Положение элементов семейства цинка как членов рядов переходных металлов, рассмотрено ранее (см. разд. Подгруппа IB и Переходные элементы). Хотя валентный электрон, отличающий их от элементов подгруппы IB, поступает на ns-уровень и у каждого из них заполнена (n1)d 10-орбиталь, по своим химическим и физическим свойствам они все-таки очень отличаются от B-подгрупп; в то же время существует некоторое сходство с непереходными металлами. Так, есть аналогия с элементами подгруппы IIA все они проявляют степень окисления II. Эти переходные металлы имеют сравнительно невысокую плотность, низкие температуры плавления и кипения, проявляя тем самым сходство с непереходными металлами. Температуры плавления и кипения, в целом, увеличиваются к серединам рядов переходных металлов и затем постепенно, но нерегулярно, уменьшаются, поэтому металлы, завершающие серии переходных элементов, должны иметь относительно низкие значения этих величин, что мы и видим в табл. 18. Однако удивительно, что у этих элементов ионные радиусы M2+ меньше ионных радиусов M+ элементов подгруппы IB, хотя металлический радиус заметно больше. Неожиданное увеличение атомного радиуса цинка нарушает закономерность сжатия, начинающуюся с подгруппы IIIB вдоль рядов переходных металлов. Большие значения потенциалов ионизации (энергия, затрачиваемая на отрыв внешних электронов от атома, находящегося в газообразном состоянии) для элементов IIB подгруппы выглядят странно на фоне легкости, с которой Zn и Cd реагируют с кислотами-восстановителями (например, с HCl), вытесняя водород. Исчерпывающее объяснение этому находится за пределами данного рассмотрения, однако причина связана с реальным количеством энергии, выделяющимся при образовании ионов в растворе (энергия гидратации).
Другой тенденцией, отличающей их от непереходных элементов, т.е. элементов A-подгрупп, является то, что цинк проявляет только степень окисления II, а кадмий реализует степень окисления II как наиболее стабильную, но может давать соединения и со степенью окисления I, и, наконец, для ртути стабильны обе степени окисления (I и II). Эта тенденция к проявлению низких степеней окисления нехарактерна для непереходных элементов. 6s2-Электронная пара ртути близка по поведению к инертной электронной паре. Например, у висмута инертная электронная пара стабилизирует состояние в низшей степени окисления III и дестабилизирует состояние V. Внутренний заполненный слой из 18 электронов сохраняется у каждого элемента, так как эти электроны не участвуют в образовании химической связи. В этой подгруппе больше сходства между Zn и Cd, чем между Cd и Hg, тогда как у непереходных элементов, наоборот, первый член подгруппы отличается от других. Цинк и кадмий не так явно различаются, как медь и серебро. Между подгруппами IB и IIB имеется небольшое сходство, при этом элементы IIB-подгруппы более реакционноспособны. Первые члены действительно имеют существенно более высокие электродные потенциалы.
Извлечение металлов из их сульфидных руд не представляет слишком сложной задачи, так как все сульфиды достаточно легко окислить до оксидов, а затем восстановить оксиды углеродом или металлом при термической обработке. Перед переработкой сульфидную руду цинка (сфалерит или цинковую обманку) подвергают обогащению, после грубого измельчения примерно до размера гравия добавляют к гомогенному шламу (в больших танках), состоящему из ферросилиция FeSi (получают в обжиговых печах сталеплавильной промышленности). Плотность этого жидкообразного шлама достаточна для флотации кремнистого материала из более тяжелых сульфидных руд ZnS в присутствии примеси PbS. Дальнейшее обогащение руды достигается после пенной флотации. Сульфид цинка при обжиге превращают в ZnO и затем восстанавливают до металла коксом при температурах, достаточных для испарения цинка из зоны восстановления. Если в руде присутствовал кадмий, его отделяют благодаря его большей летучести. Чистый цинк получают электролизом аналогично процессу рафинирования меди. Ртуть может быть как в свободном состоянии, так и в связанном в виде киновари HgS. При обжиге на воздухе металл улетучивается из печи, так как при температурах обжига HgO неустойчив и разлагается на ртуть с выделением кислорода. Сульфидная сера образует SO2. Очистку загрязненного материала проводят, отжимая через замшевый фильтр с последующей обработкой азотной кислотой и повторной перегонкой без доступа воздуха.
См. также ЦИНКОВАЯ ПРОМЫШЛЕННОСТЬ .
Применение. Металлы подгруппы находят разнообразное применение. Большие количества цинка применяют для коррозионной защиты железа и стали. Металлический цинк достаточно активен, но первоначально в природных условиях образуется инертное защитное покрытие из основного карбоната Zn2(OH)2CO3. Цинковое покрытие можно получать разными способами горячим погружением, как в электролитических методах, испарением цинка с последующей конденсацией на защищаемую поверхность, разбрызгиванием, распылением, напылением и сушкой сформованного материала в больших печах. Много цинка расходуется в производстве бронз и латуней из меди и цинка (см. табл. 17б). Эти сплавы применяют для придания высокой коррозионной стойкости, например, марганцевая бронза (90% Cu, 5% Zn, 3% Sn и 2% Mn) отличается особой коррозионной стойкостью. Кадмирование один из способов коррозионной защиты стальных поверхностей, однако это покрытие неустойчиво к кислотам. Кадмий используют в технологии низкоплавких сплавов, например, сплава Вуда (12,5% Cd), сплава Липовича (10% Cd). Кроме того, кадмий часто добавляют в подшипниковые сплавы. Все металлы подгруппы IIB находят широкое применение в технологии аккумуляторов и батарей. Например, цинк используют как оболочку в сухих батареях, где он выполняет двоякую функцию, контейнера и анода; кадмий используют как анод в никель-кадмиевых элементах типа щелочного аккумулятора Эдисона, в котором ставят кадмиевый анод вместо железного; оксид ртути(II) применяют в ртутных элементах; в стандартном элементе Вестона анод состоит из амальгамы Cd-Hg, а электролит из раствора CdSO4, такой элемент отличается стабильным и хорошо сохраняющимся напряжением. Ртуть единственный из металлов, который является жидкостью при обычной температуре (кроме ртути только галлий и цезий имеют очень низкие (около 29° С) температуры плавления, но они твердые при комнатной температуре). Ртуть отличается большой химической инертностью, высокой электропроводностью и находит разнообразное применение в электротехнических контрольно-измерительных приборах, газоразрядных лампах, переключателях и контактах. Кадмий входит в состав сплава, из которого сделаны регулирующие стержни в активных зонах ядерных реакторов, так как ядро атома кадмия отличается большим сечением захвата нейтронов.
Реакции. Цинк и кадмий активно реагируют со всеми кислотами и даже с водой (при достаточном нагревании), вытесняя из них H2. Реакции с кислотой протекают следующим образом:

Цинк растворяется в щелочах с выделением водорода и образованием цинкат-иона Zn(OH)42. Ртуть реагирует только с сильными кислотами-окислителями, такими, как HNO3 и царская водка. При этом могут образовываться нитраты ртути(I) и ртути(II), Hg2(NO3)2 и Hg(NO3)2. В этом заключается, в частности, ее отличие от меди, которая тоже способна проявлять степени окисления I и II, но с азотной кислотой образует только Cu(NO3)2. В зависимости от ряда факторов (размера реагирующих частиц, концентрации кислоты и температуры) медь реагирует с HNO3 с образованием различных соединений. Из раствора выделяются газообразные оксиды азота, азот и частично водород, в растворе образуются ион Cu(II), NH2OH, N2H4, NH4+, может образовываться осадок CuO.
Оксиды. Все металлы подгруппы (Zn, Cd, Hg) при нагревании реагируют с кислородом. Цинк образует белый ZnO, который при повышении температуры желтеет. Белый ZnO получается при термической диссоциации солей оксокислот; его используют как пигмент. Кадмий при прямом окислении образует коричневый оксид CdO, который при повышении температуры до ЦИНКА СЕМЕЙСТВО700° C разлагается на кадмий и кислород. Напротив, ZnO исключительно стабилен (см. в табл. 18 более отрицательное значение энтальпии образования ZnO). Ртуть медленно окисляется до HgO на воздухе при ЦИНКА СЕМЕЙСТВО300° С и вновь разлагается до металла при температурах чуть выше этой. HgO имеет желтую и красную модификации. Нет данных, свидетельствующих об образовании Hg2O.
Амфотерность. Оксид цинка проявляет типичные амфотерные свойства, реагируя как с основаниями, так и с кислотами и образуя соответственно цинкат-ион Zn(OH)42и Zn2+. Гидроксид цинка Zn(OH)2 получается по реакции с основанием, но в избытке основания растворяется, образуя растворимый цинкат:
Zn(OH)2 +2OH- = Zn(OH)4 2-При использовании раствора аммиака в качестве основания тоже образуется вначале гидроксид, который в избытке NH3 образует комплексный ион тетраамминцинка: Zn(OH)2 + 4NH3 = []2+ + 2OH
Кадмий образует аналогичный ион тетраамминкадмия []2.
Оксид и гидроксид кадмия в отличие от таких же соединений цинка не проявляют амфотерных свойств. Кадмиат CdO22образуется только при сплавлении оксида кадмия(II) со щелочью. Оксид ртути(II) тоже устойчив к действию оснований, но амфотерность ртути проявляется в том, что HgS растворяется в растворе Na2S с образованием тиомеркурат(II)-иона HgS22.
Взаимодействие с кислотами. При обработке оксидов элементов подгруппы IIB кислотами образуются соли нитраты, сульфаты, галогениды, фосфаты и карбонаты. Карбонаты, нитраты и сульфаты при термической диссоциации разлагаются с образованием CO2, NO2, SO3 (SO2 + O2) соответственно. Карбонат ртути(I) Hg2CO3 получается при смешении растворов Hg2(NO3)2 и карбоната щелочного металла. Образование Hg2CO3 свидетельствует об отсутствии гидролиза иона Hg(I).
Галогениды. Все металлы подгруппы реагируют с галогенами, образуя галогениды; галогениды получаются также при действии галогеноводородов на оксиды и гидроксиды этих металлов. Хлорид цинка ZnCl2, получаемый хлорированием Zn, используют для консервации древесины. Расплав ZnCl2 является умеренным электролитом, что свидетельствует о частично ионном характере связи. Фторид цинка ZnF2 получают прямым фторированием цинка либо реакцией HF c ZnO или ZnCl2. Кадмий со всеми галогенами образует CdIIX2, а также CdICl. Ртуть образует галогениды ртути(I) и ртути(II). Хлорид ртути(II) (сулема), в отличие от хлорида ртути(I) Hg2Cl2, растворим в воде. HgCl2 получают по реакции обмена HgSO4 + 2NaCl -> HgCl2 + Na2SO4 Из раствора его выделяют сублимацией. Сулема высокотоксичное вещество. Хлорид ртути(I) (каломель) нерастворим в воде, неядовит и находит ограниченное применение в медицине как слабительное. Водному слою над осадком каломель придает красивый шелковистый оттенок. Ион ртути(I) Hg22+, или []2+, имеет необычный для ионов металлов состав, но он существует, что подтверждено результатами химических, электрохимических и спектральных исследований. Ртуть металлическая и HgCl2 находятся в равновесии с Hg2Cl2: Hg0 + HgCl2 = Hg2Cl2
Хлорид ртути(II) практически полностью неионное соединение с ковалентным типом связи. Однако то, что при действии H2S на раствор HgCl2 или на раствор с ионом Hg22+ выделяется только HgS, подтверждает наличие определенного количества ионов Hg2+. Аналогично при действии гидроксид-иона образуется только гидроксид ртути(II) Hg(OH)2. Галогениды металлов подгруппы IIB проявляют тенденцию к образованию галогено- и псевдогалогенокомплексов при реакциях растворимых галогенидов или псевдогалогенидов, например:


Комплексообразование настолько сильно выражено у Cd, что аутокомплексы существуют в растворах солей кадмия (например, в растворе CdCl2): 2CdCl2 = Cd[] В соединениях XHgX (X галоген) ковалентная связь столь прочна, что комплексные соединения ртути намного менее стабильны, чем соответствующие соединения цинка или кадмия. Поэтому в растворе HgCl2 преобладают ионы HgCl+ и Cl, а добавление Cl-иона к раствору HgCl2 не увеличивает стабильность комплексных ионов типа HgCl42. При взаимодействии галогенидов (а также других солей) ртути с аммиаком в зависимости от его физического состояния (газ или раствор) получается белый плавкий либо неплавкий осадок: HgCl2 + 2NH3 (газ) = Hg(NH3)2Cl2 (плавкий белый осадок) HgCl2 + 2NH3 (водн.) = NH4Cl + HgNH2Cl (неплавкий белый осадок) Вторая реакция тормозится в присутствии больших количеств хлорида аммония NH4Cl. Среди других реакций для обнаружения аммиака в воде используется реактив Несслера щелочной раствор K2[]. При его взаимодействии с NH3 и солями аммония образуется красно-коричневый осадок: 2[]2+ NH3 + 3OH -> []I + 7I+ 2H2O Образование этого осадка возможно уже при ничтожных количествах аммиака в растворе. Таким способом можно обнаруживать начало разложения (гниения) продуктов животного или растительного происхождения. Известны и другие соединения ртути с азотом, например, аммиачные комплексы типа иона тетраамминртути(II) []2+, получаемого из аммиака и соли ионного типа: Hg(ClO4)2 + 4NH3 []2+ + 2ClO4
Очевидно, что ртуть имеет координационное число 2 (как в HgCl2 или []2+, оба линейного строения) или 4, как в []2+ (тетраэдрического строения).
Гидриды. Все металлы подгруппы IIB образуют гидриды состава MH2. Так, гидрид цинка ZnH2 получается при взаимодействии ZnI2 с LiAlH4 или LiH. Все гидриды реагируют с водой, выделяя водород, аналогично поведению гидридов элементов подгрупп IA и IIA. Термическая устойчивость гидридов убывает в ряду ZnH2 > CdH2 > HgH2, причем HgH2 начинает разлагаться при 125° С.
Сульфиды. Сульфиды двухвалентных металлов образуются по реакции прямого синтеза, а также при действии сероводорода на растворы солей. Сульфид цинка ZnS белое и растворимое в кислотах вещество, одно время он как пигмент в смеси с наполнителем BaSO4 (литопон) широко применялся для приготовления красок, в производстве пластмасс, линолеума и т.п. Сульфид кадмия CdS светложелтое вещество также применяют как пигмент, но он растворяется только в сильных кислотах или с окислителями. Для ртути известен только сульфид HgS, так как Hg22+ при обработке сероводородом образует только HgS:
Hg22+ + H2S -> Hg0 + HgS + 2H+ Приведенная реакция является реакцией диспропорционирования и хорошим доказательством чрезвычайной нерастворимости HgS: только смесь HNO3 + HCl растворяет этот сульфид.
Реакции Льюиса. Все ионы рассматриваемых металлов Zn, Cd, Hg обладают большим сродством к электронной паре, и поэтому можно полагать, что они являются сильными кислотами Льюиса, однако ртуть в меньшей степени, чем цинк и кадмий. Координационное число цинка преимущественно равно 4, но может достигать и 6. Получение двух 6-координационных комплексных ионов с октаэдрической структурой приведено ниже: Zn2+ + 6NH3 = []2+ Zn2+ + 3NH2CH2CH2NH2 = []2+
Последнее соединение представляет собой комплексный ион с бидентатными лигандами: en молекула этилендиамина NH2CH2CH2NH2, донор двух электронных пар.

  • Специальность ВАК РФ05.17.02
  • Количество страниц 86

2. ЛИТЕРАТУРНЫЙ ОБЗОР

2.1. Физико-химические свойства кадмия и цинка

2.2. Методы разделения цинка и кадмия

2.3. Экстракция органическими растворителями

2.4. Влияние гидратации компонентов органической фазы на экстракционное равновесие

2.5. Трибутилфосфат как экстрагент кислот и солей металлов

2.6. Экстракция хлоридов цинка и кадмия три-н-бутилфосфатом

Рекомендованный список диссертаций

  • Фазовые и экстракционные равновесия в системах вода - синтамид-5 - высаливатель-вода 2011 год, кандидат химических наук Головкина, Анна Владимировна

  • Термодинамическое описание экстракции хлористоводородной и бромистоводородной кислот и хлорида уранила три-н-бутилфосфатом 2000 год, кандидат химических наук Бакэро Фернандес Эдуардо

  • Экстракционное извлечение и разделение лантаноидов при переработке бедного нетрадиционного сырья 2007 год, кандидат технических наук Старшинова, Вероника Степановна

  • Дипиразолонилметаны как экстракционные реагенты элементов из аммиачных, щелочных и кислых растворов 1984 год, кандидат химических наук Хорькова, Маргарита Александровна

  • Экстракция и определение ароматических α-аминокислот и водорастворимых витаминов - закономерности и новые аналитические решения 2007 год, доктор химических наук Мокшина, Надежда Яковлевна

Введение диссертации (часть автореферата) на тему «Экстракция хлоридов кадмия и цинка три-н-бутилфосфатом»

Актуальность темы.

Экстракция органическими растворителями находит все более широкое применение в гидрометаллургии. Особенно перспективно использование экстракционных методов при разделении близких по свойствам металлов, когда необходима организация многоступенчатого процесса. В промышленности используются экстракционные процессы для разделения циркония и гафния, редкоземельных элементов, платиноидов, кобальта и никеля и др. В атомной промышленности широко применяется так называемый "Пу-рекс-процесс" для отделения урана, плутония и нептуния от продуктов деления.

Для более широкого применения экстракции необходимо продвижение в разработке теории экстракции и создание на ее основе методов описания экстракционного равновесия. В наибольшей степени это касается экстракции по гидратно-сольватному механизму, где в органическую фазу переходит значительное количество воды, вследствие чего описание экстракционного равновесия представляет собой весьма сложную проблему. По этому механизму извлекаются многие сильные кислоты и ацидокомплексы металлов, в том числе галогенидные комплексы, а в качестве экстрагентов используются нейтральные органические вещества, в числе которых и наиболее популярный из них - три-н-бутилфосфат (ТБФ).

Среди металлов, применяемых в атомной энергетике, важное место занимает кадмий. Наряду с бором кадмий является основным элементом для поглощения и регистрации тепловых нейтронов. В природе кадмий встречается в свинцово-цинковых сульфидных рудах и при его извлечении основной проблемой является отделение его от цинка. Отметим, что и особенс

О ности применения цинка, особенно для бытовых целей, требуют хорошей очистки его от кадмия из-за высокой токсичности последнего. Для этой цели часто используется различная устойчивость галогенидных комплексов кадмия и цинка, причем для разделения комплексов может быть использована экстракция органическим растворителем. Так, в литературе многократно описана экстракция хлоридных комплексов кадмия и цинка ТБФ, однако попытки количественного описания этой системы, что необходимо для поиска оптимальных условий разделения, не привели к желаемому результату.

Целью настоящей работы была разработка на примере системы гпС12-СйС12-Н20-ТБФ-высаливатель методов описания экстракционного равновесия с учетом коэффициентов активности в органической и водной фазах и констант комплексообразования, применимых для экстракции по гид-ратно-сольватному механизму, и прогнозирования оптимальных условий разделения.

Для достижения этой цели необходимо было решить следующие задачи:

1. Изучить экстракцию хлоридов цинка и кадмия по отдельности ТБФ в присутствии высаливателя и разработать метод описания равновесия в этих системах.

2. Изучить экстракцию хлоридов цинка и кадмия совместно ТБФ.

3. Разработать метод расчета равновесия при совместной экстракции хлоридов металлов ТБФ на основе данных для индивидуальных хлоридов.

Научная новизна.

1. Данные по экстракции ТБФ хлоридов цинка и кадмия из 0,1 моль/л (по отдельности или в сумме) водных растворов, содержащих хлорид натрия в качестве высаливателя.

2. Метод расчета активности ТБФ в органической фазе при извлечении солей металлов.

3. Модель экстракции хлорида цинка ТБФ в присутствии хлорида натрия и набор констант, позволяющий описывать экстракционное равновесие с учетом образования ацидокомплексов в одной фазе.

4. Модель экстракции хлорида кадмия ТБФ в присутствии хлорида натрия и набор констант, позволяющий описывать экстракционное равновесие.

5. Расчет экстракционного равновесия при совместной экстракции хлоридов цинка и кадмия ТБФ с использованием определенного ранее набора констант и адекватность расчетных коэффициентов распределения экспериментальным.

Практическая значимость.

Разработанный метод расчета равновесия при экстракции хлоридов цинка и кадмия ТБФ в присутствии высаливателя имеет общий характер и применим для описания равновесия при экстракции солей металлов, в том числе близких по свойствам.

Апробация работы. Результаты работы обсуждались на XI Российской конференции по экстракции (Москва, 1998), XI Международной конференции молодых ученых по химии и химической технологи "МКХТ-97" (Москва, 1997), Московском семинаре по экстракции (1999).

2. ЛИТЕРАТУРНЫЙ ОБЗОР.

Похожие диссертационные работы по специальности «Технология редких, рассеянных и радиоактивных элементов», 05.17.02 шифр ВАК

  • Изучение закономерностей жидкофазных и экстракционных равновесий в системах вода - производное антипирина - бензойная кислота 2006 год, кандидат химических наук Порошина, Наталья Витальевна

  • Экстракция металлов тетраоктилалкилендиаминами из сульфатохлоридных растворов 1999 год, кандидат химических наук Железнов, Вениамин Викторович

  • 2005 год, кандидат химических наук Королева, Марина Валерьевна

  • Закономерности экстракции ионов металлов расплавами в расслаивающихся системах диантипирилалкан - бензойная кислота - неорганическая кислота - тиоцианат аммония - вода 2009 год, кандидат химических наук Аликина, Екатерина Николаевна

  • Получение соединений индивидуальных РЗМ и попутной продукции при переработке низкокачественного редкометального сырья 2014 год, доктор технических наук Литвинова, Татьяна Евгеньевна

Заключение диссертации по теме «Технология редких, рассеянных и радиоактивных элементов», Нехаевский, Сергей Юрьевич

5. ВЫВОДЫ.

1. Изучена экстракция ТБФ хлоридов цинка и кадмия по отдельности и вместе из водных-растворов, содержащих хлориды этих металлов с суммарной начальной концентрацией 0,1 моль/л и различные концентрации хлорида цинка в качестве высаливателя, а также экстракция микроколичеств хлорида кадмия ТБФ из водных растворов хлорида натрия. Установлено, что коэффициент распределения цинка проходит через максимум с ростом концентрации высаливателя, а для кадмия экстремум не наблюдается.

2. Разработан метод расчета активности ТБФ в органической фазе при извлечении солей металлов, основанный на определении его мольной доли и расчете коэффициента активности по эмпирическому уравнению, найденному для бинарной системы ТБФ-Н-О.

3. Рассчитано значение (11,5) константы экстракции хлорида цинка ТБФ с образованием комплекса гпСЬ*2ТБФ, гидратированного двумя молекулами воды, с учетом коэффициентов активности в органической и водно* фазах и образования ацидокомплексов цинка в водной фазе. Предложен метод учета образования ацидокомплексов цинка гпС13~ в водной фазе с учетом коэффициентов активности компонентов.

4. Рассчитано значение (15,0) константы экстракции хлорида кадмия ТБФ с образованием комплекса Сс1С12 *2ТБФ, гидратированного двумя молекулами воды, с учетом коэффициентов активности в органической и водной фазах.

5. Найденные константы экстракции ТБФ хлоридов цинка и кадмия и константа образования ацидокомплекса цинка 2пС13" использованы для расчета методом итерраций коэффициентов распределения хлоридов цинка и кадмия при их совместной экстракции ТБФ с учетом коэффициентов активности в органической и водной фазах. Расчетные и экспериментальные коэффициенты распределения согласуются между собой с точностью около 10%, что соответствует точности экспериментальных данных.

6. Объяснено описанное в литературе уменьшение коэффициентов разделения хлоридов цинка и кадмия с ростом концентрации высаливателя, образованием ацидокомплексов цинка.

2.7. Заключение.

Рассмотренные литературные материалы показывают, что описание равновесия при экстракции кислот и металлов по гидрато-сольватному механизму представляет собой трудную задачу. Предпринятые ранее попытки

ОДСЙ*С«ДЯ

44 УТ!■"■ ■ ■ , ■ ■■.Г" имели те или иные недостатки. Вероятно также, что расчеты констант экстракции надо проводить в шкале мольных долей, так как в других шкалах пересчет коэффициентов активности затруднен. Однако в этом случае необходимо учитывать распределение воды, которая, как показывают литературные данные, практически не связана с ТБФ. Целесообразно также учи тывать влияние гидратации на экстракционное равновесие через коэффициенты активности гидратированных компонентов в рамках концепции несте-хиометрической гидратации.

3. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ И МЕТОДИКИ РАСЧЕТА.

3.1. Реактивы.

В работе были использованы хлорид натрия квалификации "хч", хлориды цинка и кадмия, карбонат натрия и хлористоводородная кислота квалификации "чда" без дополнительной очистки.

Концентрацию исходных растворов хлоридов натрия, кадмия и цинка определяли ионообменным методом. Для этого готовили колонку с катиони-том КУ-2 в Нг-форме, промывая ее 2 моль/л раствором хлористоводородной кислоты. После этого колонку отмывали дистиллированной водой до рН=5,0. Затем в колонку вносили 1 мл исходного раствора и промывали ее дистиллированной водой до рН=5,0. Промывные воды, содержащие выделившуюся при ионном обмене кислоту, собирали и титровали раствором щелочи, приготовленном из фиксанала.

Три-н-бутилфосфат "техн." очищали по обычной методике | I ! 1 I 1 1 | |

У цинка-65 выход позитронов составляет только 1,41 % и определение его активности проводили по гамма-излучению (включая аннигиляцион-ное излучение с энергией 511 кэВ) на сцинтилляционном счетчике МаЛТ1) с использование жидких проб. Определение активности кадмия-109 проводили на торцовых счетчиках СБТ-7. Так как мягкое фотонное излучение этого радионуклида заметно поглощается в слое препарата, то предварительно проводили выделение кадмия осаждением его сульфида, методика которого будет описана ниже, и далее готовили препараты кадмия-109, толщиной слоя которых можно было пренебречь.

Скорость счета препарата 1Я является разностью скоростей счета препарата с фоном 1П+Ф и фона 1ф: 1п + ф" Ч ^

Погрешность определения скорости счета 1я рассчитывается по формуле:

А1П = [(1и + фАл + ф) + (1фАф)]0"5. (3.2) где Ц+ф и tф- время измерения скоростей счета препарата с фоном и фона. Время "измерений препаратов и фона подбирали так, чтобы погрешность определения скорости счета Д1П не превышала 3%, и рассчитывали по формулам :

- (юо/г)2*/[(1п+ф- 1ф)2] (з.з)

Ц = (100/г)2 * /[(1п + ф- 1ф)2] (3.4) где г - заданная относительная погрешность. При использовании формул (3.3) и (3.4) сначала определяли скорости счета 1п + ф и 1Ф за 30 с., а затем рассчитывали необходимое время измерения и округляли его до числа, кратного 100 с.

3. 3. Методика проведения экстракции.

Экстракцию цинка и кадмия проводили в делительных варонках при комнатной температуре в пределах 296±2К. Уравновешивание водной и органической фазы проводили с помощью аппарата для встряхивания в течение 10 мин. Предварительные опыты показали, что равновесие наступало за 3-5 мин. После встряхивания проводили отстаивание в течение 30-40 мин. После этого органическую и водную фазы разделяли и проводили их центрифугирование в течение 10 мин. на лаборатоной центрифуге ЬС-425.

При экстракции цинка-65 из растворов хлористоводородной кислоты 5 мл ТБФ дважды уравновешивали с равными объемами свежих растворов кислоты заданной молярности, каждый раз после уравновешивания водная фаза возможно более полно сливалась. Далее вносили 5 мл хлористоводородной кислоты той же концентрации, содержащей радионуклид. После встряхивания проводили разделение фаз и полученные растворы центрифугировали. Далее отбирали по 4 мл каждой фазы и проводили радиометрическое определение цинка-65 на сцинтилляционном счетчике, как описано выше. Экспериментальные данные, усредненные по 5 параллельным опытам, представлены в табл. 3.1.

Список литературы диссертационного исследования кандидат химических наук Нехаевский, Сергей Юрьевич, 2000 год

1. Chart of the nuclides (Karlsruher Nuklikarte), 6-th Edition 1995, revised reprint 1998./G.Pfennig, H.Kleve-Nebenius, W.Seel-mann-Eggebert.

2. Голубев Б. П. Дозиметрия и защита от ионизирующих излучений: Учебник для вузов/Под ред. Е.Л.Столяровой. 4-е изд. перераб. и доп. - Энергоатомиздат, 1986. - 464 с.; ил.

3. Блок Н.И. Качественный химический анализ. М.: ГНТИ химической литературы. 1952. 657 с.

4. Лурье Ю.Ю. Справочник по аналитической химии. 5-е изд., перераб. и доп. М.: Химия. 1979. - 480 с., ил.

5. Справочник химика. 2-е изд., перераб. и доп. М. - Л. ГНТИ химической литературы. 1962. 1272 с.

6. Крешков А.П. Основы аналитической химии. Книга 1-ая. Теоретические основы. Качественный анализ.: Учебник для вузов.- М.: Госхимиз-дат. 1961. 636 е., ил.

7. Гиллебранд В.Ф., Лендель Г.Э., Брайт Г.А., Гофман Д.И. Практическое руководство по неорганическому анализу. Под ред. Ю.Ю.Лурье. 3-е изд., стереотипн., исправл. М.: Химия. 1966. 1112 е., ил.

8. Encyclopedia of Chemical Technology. Ed. by R. E. Kirk and D.F.Othmer. N. Y. Interscience Publ. 1953. V. 2. 916 c.

9. Целищев Г.К., Русин Л.И. Очистка фосфорной кислоты от кадмия.

10. XI Российская конференция по экстракции. Москва, 21-27 июня 1998 г. Тезисы докладов. М. 1998. С. 245.

11. И. Фомин В. В. Химия экстракционных процессов. М.: Гос. издательство литературы в области атомной науки и техники. 1960. 166 е., ил.

12. Ягодин Г. А. и др.//Основы жидкостной экстракции. Под ред. Г.А.Ягодина. М. Химия. 1981. 400 с.

13. Фролов Ю.Г., Очкин А.В. К вопросу о механизме экстракции. Ж. неорг. химии, 1962, т. 7, с. 1486.

14. Харнед Г., Оуэн Б. Физическая химия растворов электролитов.-Л.: Издатинлит. 1952. 628 с., ил.

15. Робинсон Р., Стоке Р. Растворы электролитов.- М.: Издатинлит. 1963. 646 е., ил.

16. Вознесенская И. Е. Расширенные таблицы коэффициентов активности и осмотических коэффициентов растворов электролитов. В кн. Вопросы физической химии растворов электролитов. Под ред. Г.И.Микулина.- Л.: Химия. 1968. 420 с., ил. С. 172.

17. Прокуев В. А. Закономерности экстракции комплексов некоторых металлов из хлоридных и бромидных растворов трибутилфосфатом. Доктор, диссертация. М. РХТУ им. Д.И.Менделеева. 1995.

18. Розен A.M. Физическая химия экстракционных равновесий. В кн. "Экстракция. Теория, применение, аппаратура". Вып. 1.-М.: Атомиздат. 1962." С. 6.

19. Кузнецов В.И. Успехи химии, 1954, т. 23, с. 654.

20. Healy T.V., McKay H. А. С. Trans. Faraday Soc., 1956, v. 52, p. 633.

21. Van Aartsen J.J., Korvezee A.E., ibid, 1964, v. 60, p. 510.

22. Вдовенко В. М., Ковальская М. П., Гербеневская M. М. Труды Рад. института, 8, с. 8 (1958).

23. Вдовенко В. М., Ковалева Т. В., Москалькова Э.А. Там же, 8, с. 17 (1958).

24. Фомин В. В., Моргунов А. Ф. Экстракция хлорного железа дибути-ловым эфиром из солянокислых растворов. Ж. неорг. химии, 1960, т. 5, с. 1385.

25. Laurene A.H. et al. J. phys. ehem., 1956, v. 60, p. 901.

26. Даймонд P.M., Так Д. Г. Экстракция неорганических соединений.-М.: Госатомиздат. 1962. 88 с.

27. Widmer Н.М. J. phys. ehem., 1970, v. 74, p. 3251, 3618.

28. Золотов Ю.А., Иофа Б. 3., Чучалин Л. К. Экстракция галогенидных комплексов металлов. М. : Наука. 1973. 379 с.

29. Сергиевский В. В. Влияние гидратации компонентов органической фазы на экстракционное равновесие. Неорганическая химия (Итоги науки и техники), 1976, т. 5, с. 5. ,

30. Очкин А. В., Сергиевский В. В. Термодинамика экстракции растворами аминов и солей замещенных аммониевых оснований. Успехи химии, 1989, т. 58, N. 9, с. 1451.

31. Christian S.D., Taha A.A. Quart. Rev., 1970, v. 24, N 1, p.

32. Мак Кэй Г. ТБФ в науке и технологии. В кн. "Химия экстракции. Доклады Международной конференции, Гетеборг, Швеция, 27.08-1.09.1966". Сб. статей. Пер. с англ. Под ред. А.А.Пушкова. Атомиздат, 1971, 392 с. С. 123.

33. Apelblat A. Correlation between activity and solubility of water in some aliphatic alcohols. Ber. Bunsenges. Phys. Chem., 1983, v. 87, p. 2.

34. Apelblat A. Extraction of water by some organophosphates. J. Chem. Soc., В 1969, p. 175.

35. Очкин А.В. Статистическая теория растворов солей аминов в неполярных растворителях, содержащих воду. Ж. физич. химии, 1978, т. 52, с. 1321.

36. Очкин А. В., Сергиевский В. В. Влияние гидратации компонентов органической фазы на экстракционное равновесие. В кн. "Современные проблемы химии и технологии экстракции".- М. 1999. Т. 1, с. 36.

37. Сергиевский В. В. Докл. АН СССР, 1976, т. 228, с. 160.

38. Ягодин Г.А., Сергиевский В.В., Федянина Л.Б. Ж. неорг. химии. 1979, т. 24, с. 746.

39. Ягодин Г.А., Сергиевский В.В., Федянина Л.Б. Докл. АН СССР, 1977, т. 236, с. 165.

40. Ягодин Г.А., Сергиевский В.В. Известия вузов. Химия и хим. технол., .1978, т. 21, с. 1128.

41. Справочник по экстракции. В 3 т. Ред. A.M.Розен. Т. 1. 3.И.Николотова, Н.А.Карташова. Экстракция нейтральными органическими основаниями. М.: Атомиздат, 1976. 600 с.

42. McKay Н.А.С., Healy T.V. В кн. Progress in Nuclear Energy. Ser. III. Process Chemistry. V. 1. Pergamon Press, 1956, p. 147.

43. Alcock К. et al. Trans. Faraday Soc., 1956, v. 52, p. 39.

44. Tuck D.G. J. Chem. Soc., 1958, p. 2783.

45. Михайлов В.А., Харченко С.К., Назин А.Г. Исследование двойных систем вода три-н-бутилфосфат и вод - ди-н-бутилфосфорная килота. Известия СО АН СССР. 1962, N 7, с. 50.

46. Hardy С. J., Fairhurst D., McKay Н. А. С., Wilson A.M. Trans. Faraday Soc., 1964, v. 60. N 501. part 9. p.1625.

47. Roddy J.W., Mrochek J. Activities and interaction in the tri-n-butyl phosphate water system. J. inorg. nuclear chem., 1966, v. 28, p. 3019.

48. Киргинцев A.H., Лукьянов А.В. Радиохимия, 1966, т. 8, с. 363.

49. Розен A.M., Хорхорина Л.П., Агашкина Г.Д. и др. Экстракция воды ТБФ и растворами ТБФ в разбавителях. Радиохимия, 1970, т. 12, 345.

50. Roddy J.W. Interactions in the tri-n-butyl phosphate water - diluent system. J. inorg. nuclear chem., 1978, v. 40, p. 1787.

51. Шахпаронов M. И. Введение в молекулярную теорию растворов. М.: ГИТТЛ. 1956. 507 с.

52. Hardy C.J. The activity of tre-n-butyl phosphate in equilibrium with aqueous hydrochloric asid. J. inorg. nuclear chem., 1970, v. 32, p. 619.

53. Mitamura R., Tokura I., Nishimura S. et al. J. inorg. nuclear chem., 1968, v. 30, N 4, p. 1019.

54. Kertes A.S. J. inorg. nuclear,chem., -I960, v. 14, N 1/2, p.104.

55. Копач С., Ежовска-Тшебятовска Б. Ж. неорг. химии, 1970, т. 15, с. 1059.

56. Голованов В. И. Количественное описание экстракции солянойкислоты трибутилфосфатом по гидратно-сольватному механизму. Ж. неорг. химии, 1982, т. 27, с. 1514.

57. Ochkin А.V., Yi-guy Li. Water partition and equilibrium in system TBP-HCl-HgO. 5-th International Symposium on Solubility Phenomena. Moscow, 1992, p. 100.

58. Sinegribova 0.A., Ochkin A.V., Baquero E. Water partition and equilbrium in system TBP-HC1-H20. Value adding through solvent extraction. Proceedings of ISEC-96. Ed. by D. C. Shallcross, R. Paimin, L.M. Prvcic. Melbourne, Australia, 1996. V. 1, p. 395.

59. Morris D.P. C., Short E.L. Zinc chloride and zinc bromide Complexes. Part II. Solvent extraction studies with zinc-65 as tracer. J. Chem. Soc., 1962, July, p. 2662.

60. Morris D.P.C., Short E.L., Slater D.N. J. Electrochim. Soc., 1963, v. 8, N 5, p. 289.

61. Morris D.P.C., Short E.L., Slater D.N. J. inorg. nuclear chem., 1964, v. 26, N 4, p. 627.

62. Forrest V.M.P., Scargill D., Spickernell D.R. The extraction of zinc and cadmium by tri-n-butyl phosphate from aqueous chloride solutions. J. inorg. nuclear chem., 1969, v. 31, N 1, p. 187.

63. Абдукаюмов M., Левин В.И., Козлова M.Д. Радиохимия, 1972, т. 14, N 1, с. 54.

64. Левин В.И., Абдукаюмов М., Козлова М.Д. Радиохимия, 1972, т. 14, N 1, с. 58.

65. Белоусов Е.А., Аловейников А.А., Ж. неорг. хим., 1975, т. 20, N 10, с. 2686.

66. LeuzeR., Bay bar z R., Weaver В. Nucl. Sci. Engng, 1963, v. 17, p. 252.

67. Моисеев A.A., Иванов В. И. Справочник по дозиметрии и радиационной гигиене. 4-ое изд., перераб. и доп.- М.: Энергоатомиздат, 1990.-252 е.; ил.

68. Козлов В.Ф. Справочник по радиационной безопасности. 3-е изд., перераб. и доп. - М.: Энергоатомиздат, 1987. - 192 с., ил.

69. Несмеянов Ан. Н., Лапицкий A.B., Руденко Н.П. Получение радиоактивных изотопов. М.: ГНТИ химической литературы, 1954. 194 е., ил.

70. Handbook of Chemistry and Physics. 50-ed. Ed. R. C.Weast. Cleveland. Chemical Rubber Co. 1970.

71. Захаров-Нарциссов О.И., Михайлов Г.Г., Очкин A.B., Попов А.И. Практикум по ядерной физике. Измерение абсолютной и относительной активности. Учебное пособие. М.: МХТИ им. Д.И.Менделеева, 1986. - 63 с.

72. Микулин Г. И. 0 некоторых методах расчетного определения плотности и теплоемкости смешанных растворов электролитов. В кн. Вопросы физической химии растворов электролитов. Под ред. Г.И.Микулина.- Л.: Химия. 1968. 420 е., ил. С. 401.

73. Микулин Г.И. Термодинамика смешанных растворов сильных электролитов. В кн. Вопросы физической химии растворов электролитов. Под ред. Г. И. Микулина.- Л.: Химия. 1968. 420 с., ил. С. 202.

74. Вознесенская И. Е., Микулин Г.И. Таблицы активности воды в растворах сильных электролитов при 25° С. В кн. Вопросы физической химии растворов электролитов. Под ред. Г.И.Микулина.- Л.: Химия. 1968. 420 е., ил. С. 361.

75. Нехаевский С.Ю., Очкин А. В. Определение активностей три-н-бу- 86 тилфосфата в некоторых экстракционных системах. Ж. физич. химии, 1998 т. 72, с. 2251.

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.

ОПИСАИИЕ ИЗОБРЕТЕНИЯ Союз Советских Социалистических Республик(23) Приоритет Государственный комитет СССР по делам изобретениИ н открытий(72) Авторы изобретения А.И,Холькин, Г,Л.Пашков, Н.И.Антипов, Г.М,Гришин, Н,К.Калиш, Л,Я,Савкина и В,Н.Андриевский Государственный научно-исследовательский и проектноконструкторский институт гидрометаллургии цветныхметаллов фГидроцветмет и Институт н.органическойхимии Сибирского отделения АН СССР(54) СПОСОБ РАЗДЕЛЕНИЯ ЦИНКА И КАДМИЯ Изобретение относится к гидро- металлургии цветных металлов, а именно к извлечению кадмия из сульфатных цинковых растворов и может быть использовано для разделения цинка и 5 кадмия, очистки сульфатных цинковых. растворов, а также для получения солей цинка и кадмия высокой чистоты.Известен способ раэделения цинка и кадмия из сульфатных растворов 10 путем многоступенчатой экстракции раствором галоидных солей четвертичных аммониевых оснований Н 4 ИХ, где Х - галогенид,ион, в органйческом растворителе. Реэкстракцию кадмия из 15 органической фазы проводят избытком водного раствора карббната аммония с образованием твердого осадка карбоната кадмия (1.Недостатком данного способа явля ется малая эффективность разделения цинка и кадмия за одну ступень экстракции, сложность технологического процесса, большой расход раствора карбоната аммония, используемого в 25 избытке для реэкстракцин кадмия иэ органической фазы.Цель изобретения - повышение степени разделения цинка и кадмия, упрощение процесса за счет совмещения 30 2процессов реэкстракции кадмия и регенерации экстрагента и удешевлениепроцесса эа счет снижения расходареагентов.Поставленная цель достигается тем,что в качестве экстрагента используют 0,05-0,8 М раствор диалкилдитиофосфорных солей четвертичных аммониевых оснований.Сущность способа заключается вследующем,Из сульфатных цинковых растворовкадмий селективно извлекается раствором четвертичной аммониевой солидиалкилдитиофосфорной кислоты.(Н 4 КА)в органическом растворителе, йапримербензоле, ксилоле, керосине, 2-этилгексаноле, тетрахлорэтилене и т,п.В качестве экстрагента используютчетвертичную аммониевую соль диалкилдитиофосфорной кислоты, напримертетраоктиламмоний-ди-(2-этилгексил)дитиофосфат (ТОАФ), триалкилбенэиламюний"ди-(2-этилгексил) дитиофосфат(ТАБАФ) и др. Экстрагентлегко получают смешиванием диалкилдитиофосфОрной кислоты - НА (например, ди-(2 этилгексил) дитиофосфорной кислоты)с тетраалкил (арил) аммониевой сольюминеральной кислоты (например, тетраоктиламмоний бромидом - В ИВг, три алкилбензиламмоний хлоридом - В ИС 1, метилтриалкиламмонийсульфатом - (В И) БО 4) в стехиометрическом соотношении в органическом растворителе, Образовавшуюся минеральную кислоту из органической Фазы вымывают водой, После отмывки органическая фаза представляет раствор В ИА в органическом растворителе (где А - органический анион, пригодный для экстракции кадмия), При экстракции кадмия из сульфатных растворов происходит образование диалкилдитиофосфата кадмия и сульфата четвертичного аммониевого основания, распределяющихся в органическую фазу(са) (эо э,+2(к 4 ЙА(ю 50(сйА 1,(1) 4 3где (в) и (о) - индексы, обозначают соответственно водную и органическую фазы,Кадмий экстрагируют в форме диалкилдитиофосфата кадмия. Цинк практически остается в водной Фазе. Большая концентрация сульФат-иона в водном растворе, создаваемая сульфатом цинка, способствует получению высоких коэффициентов распределения кадмия (см.1)В данном способе реэкстракция кадмия из органической фазы может быть осуществлена водой, При этом вследствие малой концентрации сульфат-иона в системе коэффициенты расппеделения кадмия весьма малы (см, 1), Таким образом, возможно извлечение кадмия из цинковых сульфатных растворов беэ расхода неорганических реагентов. Кроме того, реэкстракция кадмия из органической Фазы возможна раствором щелочи (при этом гидроокись кадмия. выпадает в осадок) или раствором аммиака (при этом возможно получение концентрированных растворов, содержащих аммиачные комплексы кадмия), После реэкстракции экстрагент в органической фазе находится в форме В И+А и возвращается на стадию экст 4ракции, При экстракции кадмия из цинковых растворов с помощью В, ИА одновременно извлекают ряд примесей катионнбго (медь, свинец, сурьма, мышьяк и др.) и анионного характера (хлорид, фторид, нитрат-ионы), которые должны быть выделены до подачи цинкового раствора на электролиз.П р и м е р 1,Лроводят экстракцию кадмия из сульфатного раствора, содер жащего 4,45 г/л Сй, 54 г/л Еп, 0,5 М раствором ди-(2-этилгексил) фосфата тетраоксиламмония в бензоле, Соотношение объемов фаз 1:1, продолжительность перемешивания 30 мин, Обнаружено: в органической фазе 2,52 г/лСс 1; 0,0028 г/л Еп, в водной фазе1,93 г/л Сб; 53,6 г/л Еп, Д а=1,301Д - 52 10 ф са(х -25 ф 10 ф-5П р и м е р 2, Проводят экстракциюкадмия из сульфатного раствора, содержащего 4,97 г/л Сс 1, 64 г/л Еп, в присутствии 20 г/л Н БО 4 О, 35 М растворром ТОАФ в бензоле. Обнаружено: ворганической Фазе 3,83 г/л Сй;0,0355 г/л Еп) в водной фазе 1,14 г/лСй; 63,6 г/л Еп; Дса=3, Зб; Д - - 0,56 х4 О1 (Са(1 п -- б, 0 ф 10 З,П р и м е р 3. Проводят экстракцию кадмия из сульфатного раствора,содержащего 4,75 г/л Сд, 59 г/л Еп,20 г/л Н БО 4, 0,5 М раствором ТОАФ2в бензоле, Обнаружено; в органической фазе 4,63 г/л Сд, 0,015 г/л 2 п;в водной фазе 0,119 г/л Сй, 59,0 г/лЕп; Д а=390 Д 2 =2 г 5 101 РСа(уи ==1,6 105;, Извлечение Сд за 1 ступеньсоставляет 97,5.П р и м е р 4. Проводят экстракциюкадмия из сульфатного раствора, содержащего 4,75 г/л Сс 1, 55 г/л Еп, 20 г/л25 НБО, в присутствии хлорид-ионов(4,5 г/л) 0,5 М раствором ТОАФ вбензоле, Обнаоужено: в органическойФазе 4,75 г/л Сй, 1,16 г/л Еп;3,42 г/л С 1 ; в водной фазе 53,5 г/лЗ 0 Еп," 1,06 г/л С 1 , кадмия не обнаружено ((0001 г/л); Дса)5 10Д =2,2 10 ; (Са(7 п) 2 10, Извлеченйе кадмия за 1 ступень) 99,98,извлечение хлора 76.П р и м е р 5В условиях, аналогичных примеру 4, проводят экстракциюкадмия из раствора, содержащего дополнительно нитрат-ион (6 г/л) . Обнаружено; в органической фазе 4,75 г/лСй; 2,62 г/л Еп; в водной фазе4053,0 г/л Еп, кадмия не обнаружено;Дса)5 10; Д=4,9 101 са(п) 110Извлечение кадмия за 1 ступень99,98,Данный способ позволюг сократить45 расход реагентов (в принципе процессреэкстракции может быть безреагентным), Совмещаются операции реэкстракции кадмия и регенерации экстрагента,Повышается селективность извлечениякадмия в органическую фазу, Коэффициент разделения Рсдо постигаетвеличины 110 и выше по сравнению с.экстракцией йодидами четвертичныхйммониевых оснований са(п до1 10), Увеличивается извлечение5кадмия () 99,98) на одной ступениэкстракции, Процесс может пооводитьсяв одну стадию вместо многоступенчатого, Кроме того, повышается глубинаочистки цинкового раствора.Формула изобретенияСпособ разделения цинка и кадмия из сульфатных растворов зкстракцией730851 Составитель Л,СитноваРедактор О.Колесникова Техред Н,Бабурка Корректор Г,Назарова Заказ 1462/14 тираж 694 Подписное ЦНИИПИ Государственного комитета СССР по делам изобретений и открытий 113035, 1 чосква, Ж, Раушская наб., д, 4/5Филиал ППП Патент, г.ужгород, ул,Проектная,4 солями четвертичных аммониевых оснований в органическом разбавителе,о.т л и ч а ю щ и й с я тем, что, сцелью повышения степени разделения,упрощения и удешевления процесса вкачестве экстрагента используют 0,050,8 И раствор диалкилдитиоФосорныхсолей четвертичных аммониевых осно,ваний.Источники информации,принятые во внимание при экспертизе 1, ПаТент США Ю 3258307,кл. 23-61,1966 .

Заявка

2534718, 19.10.1977

ГОСУДАРСТВЕННЫЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ И ПРОЕКТНО КОНСТРУКТОРСКИЙ ИНСТИТУТ ГИДРОМЕТАЛЛУРГИИ ЦВЕТНЫХ МЕТАЛЛОВ "ГИДРОЦВЕТМЕТ", ИНСТИТУТ НЕОРГАНИЧЕСКОЙ ХИМИИ СО АН СССР

ХОЛЬКИН АНАТОЛИЙ ИВАНОВИЧ, ПАШКОВ ГЕННАДИЙ ЛЕОНИДОВИЧ, АНТИПОВ НИКОЛАЙ ИВАНОВИЧ, ГРИШИН ГЕННАДИЙ МИХАЙЛОВИЧ, КАЛИШ НАДЕЖДА КОНСТАНТИНОВНА, САВКИНА ЛЮДМИЛА ЯКОВЛЕВНА, АНДРИЕВСКИЙ ВЯЧЕСЛАВ НИКОЛАЕВИЧ

МПК / Метки

Код ссылки

Способ разделения цинка и кадмия

Похожие патенты

Подлежит обезвоживанию. Кроме того, способ подачи раствора через форсунку, расположенную сверху над кипягцигг слоем, и проведение процесса обезвоживания раствора осуществляются в одну стадию без возврата в слой вынесенного газами продукта. При этом достигается значительная интенсификация процесса и высокий термический к.п,д. (80 о 7,) за счет сникения энергетических затрат, продукт получается в гранулированном виде повышенного качества за счет меньшего содержания кристаллизационной воды,На чертеже изображен аппарат КС (общий вид) для обезвоживания растворов сульфата цинка.Гчв 138241 Предмет изобретения Способ обезвоживания растворов сульфата цинка путем подачи их в псевдоожиженный слой, о т л и ч а ю щ и й с я тем, что, с целью...

Расход дорогостоящего реагента для достижения необходимого качества очистки раствора.Цель изобретения - повышение качества очистки растворов и снижение расхода реагента.Эго достигается тем, что в качестве активирующей добавки используют сурьмяный концентрат, например, промпродукт щелочного рафинирования чернового свинца. м е р. Берут исходныймиевый раствор сульфата цинкаий 130 г/л цинка 1,0 г/л0,15 г/л кобальта, 0,12 г/лСурьмяный концентратТрехокись сурьмыСоль Шлиппеф 0,2 15,8 3,9 28,7 8,7 Механическая смесь окисловсурьмы, свинца, мышьяка,и олова, по составу соответствующая сурьмяному концентрату 5,4 0,6 Составитель В. ГутинРедактор С. Суркова ТехредМ. Келемеш Корректор С, Патрушева Заказ 3610/18 Тираж 726 Подписное ЦНИИПИ...

В качестве калия, Сухую смесь тщательно перемешивают и переводят из фарфоровой чашки.в кварцевую пробирку. Эту пробирку со смесью подвергают нагреванию на газовой горелке до температуры 500 - 550 С в течение 10 - 15 мин. Сожженную смесь растворяют в дистиллированной воде, подкисленной несколькими каплями 10% НС 1 и фильтруют через плотный фильтр в мерную колбу объемом 250 мл, Остаток на фильтре многократно промывают дистиллированной водой, пока не наберется указанный объем фильтрата. Часть фильтрата (около 50 мл) пропускают через ионообменную катионитовую смолу ьрекомендуются марки Ку - 2 или Ку - 2 - 8), насыщенную водородным ионом. Из этого фильтрата, освобожденного от катионов, берут 5 или 10 мл, помещают в стакан, туда же добавляют...

В природе встречаются в виде сульфидных руд: ZnS – цинковая обманка, ZnS . CdS – гринокит, ZnCO 3 – галмей. Процесс получения цинка и кадмия из руд проводят в две стадии. Сначала обжигом на воздухе переводят сульфид в оксид, а затем восстанавливают оксид металла углем:

2ZnS + 3O 2 = 2ZnO + 2SO 2

ZnO + C = CO ­ + Zn

Образующиеся в процессе последней реакции пары металла увлекаются током СО и сгущаются в конденсаторах.

Помимо восстановления оксида цинка углем для выделения металла часто пользуются электролизом. В этом случае полученный обжигом оксид растворяют в серной кислоте. Образующийся раствор ZnSO 4 и служит электролитом, из которого осаждают цинк на катоде.

Химические свойства

1. Цинк и кадмий - активные металлы. Реагируют с галогенами, кислородом, серой. Не взаимодействуют с азотом, водородом, углеродом.

2. Легко растворяются в разбавленных кислотах:

4Zn + 10HNO 3 = 4Zn(NO 3) 2 + NH 4 NO 3 + 3H 2 O

3. В щелочах растворяется только цинк:

Zn + 2NaOH + 2H 2 O = Na 2 + H 2 ­

4. Оксиды цинка и кадмия - тугоплавкие белые порошки, плохо растворимые в воде. Получаются термическим разложением гидроксидов или карбонатов:

Cd(OH) 2 = CdO + H 2 O

5. Гидроксид цинка амфотерен:

Zn(OH) 2 + 2NaOH = Na 2

6. Соли цинка и кадмия в основном бесцветны, кроме сульфида кадмия CdS (ярко-желтого цвета), который используется в качестве краски. Получение CdS:

CdCl 2 + Na 2 S = CdS + 2NaCl

В качестве белой краски используется смесь ZnS + BaSO 4 – литопон и цинковые белила – ZnO. Zn и Cd используются в сплавах (бронзы, латуни) и в качестве защитных покрытий на сталях.

Ртуть

В природе встречается в виде минерала HgS – киноварь и в самородном состоянии. Получается обжигом сульфида:

HgS + O 2 = Hg + SO 2

Пары ртути очень ядовиты, их ПДК в воздухе 0,005 мг/м 3 .

Наименование параметра Значение
Тема статьи: Цинк и кадмий.
Рубрика (тематическая категория) Металлы и Сварка

Так как оба металла имеют сравнительно низкую температуру кипения, то при введении их в расплавы серебра следует соблюдать особую осторожность. Эти металлы являются важнейшими легирующими компонентами при получении припоев, и в связи с этим влияние их на свойства сплавов следует рассмотреть более детально.

Аg-Zn. В серебре в твердом состоянии растворяется до 20% цинка, но практически содержание цинка в сплаве не должно превышать 14%. Такие сплавы не тускнеют, хорошо полируются и имеют хорошую пластичность.

Аg -Cd. Предел растворимости кадмия в серебре составляет около 30%. Эти сплавы пластичны и устойчивы против коррозии на воздухе.

Аg-Zn-Cd. Сплавы имеют низкую температуру плавления и в некоторых случаях применяются в качестве припоев. Сплавы имеют широкую область кристаллизации, а паяный шов обладает низкими механическими свойствами, что обусловливает ограниченное применение припоев на базе этой системы.

Аg-Cu-Cd. Медь совершенно не растворяет кадмий, а образует с ним хрупкое соединœение Сu 2 Сd. При достаточно большом содержании серебра в сплаве кадмий, растворяясь в серебре, делает сплав вязким, пластичным и весьма устойчивым к потускнению.

Серебряно-медные сплавы с небольшими добавками кадмия особенно хорошо подходят для глубокой вытяжки и чеканки.

Аg-Сu-Zn. Несколько сотых долей процента цинка, введенных в расплав перед разливкой, значительно повышают жидкотекучесть сплавов серебра с медью. Вместе с тем, небольшие добавки цинка делают сплавы более устойчивыми к потускнению и более пластичными. Медь растворяет до 39% цинка. При большем содержании цинка в сплавах серебра с медью образуются тройные сплавы с низкой температурой плавления. Такие сплавы нашли широкое применение в качестве припоев.

Для получения припоев применяют сплав серебро - медь эвтектического состава с добавками цинка, понижающими температуру плавления сплава.

Аg-Сu-Zn-Сd. Сплавы этой четырехкомпонентной системы имеют низкую температуру плавления и, вследствие этого, нашли широкое применение в качестве припоев. Большое понижение температуры плавления этих сплавов объясняется тем, что цинк и кадмий образуют низкоплавкую эвтектику.

Свинœец. Серебро и свинœец образуют эвтектику с температурой плавления 304°С. Располагаясь по границам зерен, эти эвтектические соединœения делают сплав красноломким. Согласно ГОСТу 6836-72, содержание свинца в сплавах серебра не должно превышать 0,005%.

Олово. Присутствие в небольших количествах олова значительно снижает температуру плавления сплавов системы серебро - медь. В чистом серебре растворяется до 19% олова. При этом получаются сплавы более мягкие и пластичные, чем сплавы серебра с медью, однако эти сплавы имеют тусклый цвет. При содержании олова в сплавах сере­бра с медью более 9% и при температуре 520°С образуется хрупкое соединœение Сu 4 Sn. Вместе с тем, из-за образования при плавке окиси олова SnО 2 хрупкость увеличивается.

Алюминий. В сплавах серебро - медь в твердом состоянии алюминий растворяется до 5%, при этом структура и свойства сплава почти не меняются. При более высоком содержании алюминия в сплаве образуется хрупкое соединœение Аg 3 Al 2 . При плавке и отжиге образуется также окись алюминия А1 2 О 3 , которая располагается по границам зерен. Эти соединœения делают сплав хладноломким и непригодным к обработке.

Желœезо. Не растворяется в серебре и всœегда является вредной примесью в сплавах серебра. Попадая в сплав, частицы желœеза остаются в нем в виде инородных твердых включений. Вместе с тем, желœезо взаимодействует с материалом тигля, частицами угля, наждаком, солями, используемыми при плавке, и образует твердые и хрупкие соединœения. Попадая на поверхность слитка или изделия, эти соединœения при шлифовке вырываются из металла, и оставляют на поверхности изделия характерные вытянутые следы.

Кремний. Кремний в серебре не растворяется, и при содержании сто в сплаве 4,5% образуется кремнисто-серебряная эвтектика с температурой плавления 830°С. Располагаясь по границам зерен, эти эвтектические выделœения значительно снижают пластичность сплава, и в большинстве случаев делают сплав полностью непригодным к обработке пластической деформацией. В сплав кремний может попасть из кварца, который служит материалом для изготовления тиглей.

Сера. С основными компонентами сплавов сера образует твердые и хрупкие соединœения Аg 2 S и Сu 2 S, которые, располагаясь между кристаллами и внутри зерен, вызывают хрупкость сплавов. Для появления хрупкости сплава достаточно присутствия в нем 0,05% серы. Серу зачастую содержит древесный уголь, под слоем которого производится отжиг, горючие материалы, газы, травители и т. д.

Присутствие в сплаве серы или сернистых соединœений приводит к его потемнению вследствие образования сульфида серебра.

Фосфор. Сплавы серебра перед разливкой раскисляют в большинстве случаев фосфористой медью, содержащей от 10 до 15% фосфора. Фосфор быстро реагирует с окислами сплава, присоединяя находящийся в них кислород, и образует газообразное соединœение, ĸᴏᴛᴏᴩᴏᴇ либо улетучивается, либо реагирует с другими частицами окислов меди, образуя шлаковые соединœения метафосфата меди. Ввиду того, что фосфористая медь добавляется, как правило, в избытке, так как содержание окислов в металле неизвестно, то фосфор попадает в металл. Незначительного количества фосфора достаточно для образования хрупких интерметаллических соединœений АgР 2 и Аg 3 Р, которые в виде эвтектики располагаются по границам зерен. Температура плавления тройной эвтектики Аg - Сu - Р со­ставляет б41°С. В результате образования фосфидов сплавы становятся красноломкими, быстро тускнеют и на них плохо ложатся гальванические покрытия.

Углерод. Углерод не реагирует с серебром и не растворяется в нем. Попадая в расплав, частицы углерода остаются в нем в виде инородных включений.

Ниже представлены состав, свойства и марки некоторых припоев на базе серебра.

Цинк и кадмий. - понятие и виды. Классификация и особенности категории "Цинк и кадмий." 2017, 2018.