Домой / Праздничный / В чем измеряется дельта g. Свободная энергия Гиббса

В чем измеряется дельта g. Свободная энергия Гиббса

Стандартная энергия Гиббса реакции равна сумме стандартных энергий Гиббса продуктов реакций за вычетом суммы стандартных энергий Гиббса исходных веществ с учетом стехиометрических коэффициентов уравнения реакции.

где - стандартная энергия Гиббса реакции,

- сумма стандартных энергий Гиббса продуктов реакции,

- сумма стандартных энергий Гиббса исходныхвеществ,

n, n / - стехиометрические коэффициенты исходных веществ и конечных продуктов в уравнении реакции.

Стандартные значения энергии Гиббса для 1 моля вещества при Т = 298 К приведены в справочнике /5, табл.44; 6, табл.1/.

Решение :

1)Расчет энергии Гиббса.

Находим в справочнике /5, табл.44/ значения стандартных энергий Гиббса для веществ реакции:

а) продукты реакции

,

б) исходные вещества

,

.

Применяя уравнение (63), получим:

Вывод . Полученное значение энергии Гиббса () указывает на то, что данная реакция в закрытой системе может протекать в стандартных условиях в прямом направлении.

2) Расчет энергии Гельмгольца.

Для расчета изохорно-изотермического потенциала рассмотрим соотношение между энергией Гиббса и энергией Гельмгольца:

, , но .

т.е. .

Если в реакции принимают участие только конденсированные фазы (твердые и жидкие вещества), то изменение объема DV равно нулю.

Если в реакции участвуют газообразные продукты, то изменением объема пренебрегать нельзя.

Рассмотрим простейший случай, когда газы, участвующие в реакции, подчиняются законам идеального газа. Тогда согласно уравнению Клапейрона-Менделеева можно записать PDV=DnRT .

Dn=n кон - n исх,

где n кон - число молей газообразных конечных продуктов;

n исх – число молей газообразных исходных веществ.

В нашем примере газообразный продукт один – углекислый газ, поэтому Dn = 0 - 1= - 1.

Вывод . Так как полученное в результате расчета значение DF <0, то в изохорно-изотермическом процессе в закрытой системе будет протекать самопроизвольный процесс.

· Для нахождения энергии Гиббса можно применять уравнение (56), которое дает возможность производить расчет как в стандартных условиях, так и при любой другой температуре.

Пример 2 . Вычислить энергию Гиббса и Гельмгольца при Т 1 = 298 К и Т 2 = 473 К, при постоянном давлении 1,013×10 5 Па для реакции:

Как скажется повышение температуры на направления протекания данной реакции?

Решение . Для расчета DG реакции воспользуемся уравнением (56):

,

где DH и DS - соответственно изменение энтальпии и энтропии реакции при заданной температуре:

а) Т =298 К.

Определяем изменение стандартной энтальпии реакции D r H 0 (298) (расчет приведен в примере 1 раздела 1.3.3): D r H 0 (298) = -170,42 кДж.

D r S 0 (298)(расчет приведен в примере 1 раздела 1.5.4): D r S 0 (298) = -133,77 Дж.

Вывод . Расчет стандартной энергии Гиббса по справочным данным, приведенный в предыдущем примере, и расчет по уравнению (56), приведенный в данном примере, практически совпадают. Относительная ошибка составляет:

Расчет DF (298)см. в этом же разделе, пример 1.

б) Т = 473 К.

Определяем изменение энтальпии реакции D r H (473) (расчет приведен в примере 2 раздела 1.4.2):

D r H (473) = -125,79 кДж.

Определяем изменение энтропии реакции D r S (473) (расчет приведен в примере 1 раздела 1.5.4):

D r S (473) = -12,9 Дж.

Подставим полученные данные в уравнение (56):

Расчет DF проводим согласно уравнению (64):

Вывод . Ответ на последний вопрос задачи определяется знаком D r S и D r H (см. табл. 1). В нашем случае , т.е. в уравнении член (- TDS) для нашей реакции положителен. Следовательно, с повышением температуры Т в изобарно-изотермическом процессе значение D r G будет возрастать (т.е. становиться менее отрицательным). Это означает, что повышение температуры будет препятствовать протеканию рассматриваемой реакции в прямом направлении.

В изохорно-изотермическом процессе будут наблюдаться аналогичные тенденции для энергии Гельмгольца.

.

Преобразуем данное уравнение и проинтегрируем:

.

Если Т 1 = 298 К, то уравнение примет вид:

или (65)

В зависимости от степени точности возможны три варианта расчета энергии Гиббса по этому способу.

Первый вариант . Предположим, что энтропия реакции не зависит от температуры, т.е. D r S 0 (298) = D r S (Т 2), тогда:

Полученный результат расчета дает существенную погрешность.

Пример 3 . Вычислить энергию Гиббса предложенным способом для реакции:

При Т 2 = 473 К, при постоянном давлении 1,013×10 5 Па.

Решение.

Стандартную энергию Гиббса находим по уравнению (63) (см. пример 1 в разделе 1.5.8.): D r G 0 (298) = -130,48 кДж.

Определяем изменение стандартной энтропии реакции D r S 0 (298) (расчет приведен в примере 1 раздела 1.5.4): D r S 0 (298) = -133,77 Дж.

Подставим полученные данные в уравнение (66) и произведем расчет:

Вывод . Результат расчета отличается от результата в примере 2,б раздела 1.5.8, т.к. последний вариант является приближенным, не учитывается фазовый переход воды.

Второй вариант. Предположим, что энтропия реакции зависит от температуры

или .

Если теплоемкость не зависит от температуры D r С Р = const , то после интегрирования имеем:

Подставим полученное значение D r S (Т )в (65):

После интегрирования получим:

учитывая зависимость энтропии реакции от температуры.

Решение.

Определяем D r С Р реакции по первому следствию закона Гесса:

Воспользуемся значениями стандартных изобарных теплоемкостей для индивидуальных веществ, приведенных в справочнике /5, табл. 44/:

а) продукты реакции:

б) исходные вещества:

,

.

Расчет стандартной энергии Гиббса для данной реакции приведен в примере 1 раздела 1.5.8. D r G 0 (298) = -130,48 кДж.

Расчет стандартной энтропии для данной реакции приведен в примере 1 раздела 1.5.4. D r S 0 (298) = -133,77 Дж.

Подставляя полученные значения в (67), получим:

Вывод: данный расчет также является приближенным, т.е. он не учитывает зависимость теплоемкости от температуры, но более точным, чем первый способ, рассмотренный выше.

Пример, рассматриваемый нами, является более сложным, т.к. в предложенном интервале температур у одного из веществ, а именно у воды, существует фазовый переход, что необходимо учитывать. Это усложняет расчет и делает его громоздким.

В таких случаях вычислить энергию Гиббса можно, воспользовавшись формулой (56). Расчет этот приведен в примере 2 раздела 1.5.8.

На практике часто для расчета энергии Гиббса используют метод Темкина - Шварцмана (1946 г.), позволяющий стандартную энергию Гиббса при 298 К пересчитать для любой температуры /1, 4, 7, 8/.

Пример 5. Вычислить изменение энергии Гиббса при изотермическом сжатии 0,005 м 3 кислорода от Р 1 =0,1013×10 5 Па до Р 2 =1,013×10 5 Па (Т = 0 0 С ), считая кислород идеальным газом.

Решение. Из уравнение Менделеева-Клапейрона находим число молей кислорода, участвующих в реакции:

Для определения DG воспользуемся формулой (58):

.

Т.к. процесс протекает при Т= const, то второе слагаемое будет равно нулю. Расчет проводим по формуле dG = VdP.

Из уравнения Менделеева-Клапейрона выразим V:

Подставляем:

Интегрируем и подставляем данные задачи:

Вывод. При изотермическом сжатии кислорода процесс не может протекать самопроизвольно.

Пример 6. Теплота плавления льда при 0 0 С равна 335 Дж/г. Удельная теплоемкость воды равна . Удельная теплоемкость льда равна . Найти DG, DH, DS для процесса превращения 1 моль переохлажденной воды при – 5 0 С в лед.

Решение. Переохлажденная жидкость не находится в состоянии равновесия с твердой фазой. Рассматриваемый процесс не является статическим, поэтому вычислить энтальпию и энтропию по теплоте кристаллизации для переохлажденной жидкости нельзя.

Для вычисления данных функций мысленно заменим нестатический процесс тремя квазистатическими, в результате которых система придет из начального состояния в конечное.

1-й процесс. Нагревание обратимым путем 1 моль воды до температуры замерзания. При этом изменение энтальпии и энтропии согласно уравнениям (26) и (36):

,

где С Р – молярная теплоемкость воды,

Подставляя в формулы данные задачи, получим:

2-й процесс. Кристаллизация воды при 0 0 С (273 К). В условиях задачи дана удельная теплота плавления ( пл.), т.е. теплота фазового перехода 1 г воды из твердого состояния в жидкое.

Т.к. ,

то ,

где DН 2 – теплота кристаллизации 1 моля воды,

пл. уд – удельная теплота плавления, приведенная в задаче,

М – молярная масса воды.

Тогда .

Энтропия фазового перехода рассчитывается по формуле (47):

.

Подставим данные и получим:

3-й процесс. Обратимое охлаждение льда от 273 до 268 К. Расчет энтальпии и энтропии проводим аналогично первому процессу.

, ,

где С Р – молярная теплоемкость льда,

Подставляя данные, получим:

Общее изменение энтальпии и энтропии в изобарном процессе

Изменение энергии Гиббса в рассматриваемом процессе рассчитывается по формуле (56).

Вывод. По результатам расчета видно, что при превращении 1 моль переохлажденной воды в ледэнтальпия и энтропия в системе убывает. Это значит, что самопроизвольный процесс в таком случае возможен только при низких температурах, когда энергия Гиббса DG приобретает отрицательные значения (см. табл.2), что мы и наблюдаем в нашем примере.

Вопросы для самопроверки:

1. Дайте определение самопроизвольных процессов.

2. Какие процессы называют равновесными?

3. Основные формулировки второго начала термодинамики. Его математического выражение.

4. Каковы возможности второго начала термодинамики?

5. Выведите формулу объединенного закона термодинамики.

6. Каков физический смысл заложен в понятие энтропия?

7. Как изменяется энтропия в равновесных процессах?

8. Как изменяется энтропия в самопроизвольных процессах?

9. В каких системах изменение энтропии может служить мерой направленности физико – химических процессов?

10. В каком соотношении находятся молярные энтропии трех агрегатных состояний одного вещества: газа, жидкости, твердого тела?

11. В изолированной системе самопроизвольно протекает химическая реакция с образованием некоторого количества конечного продукта. Как изменяется энтропия системы?

12. В каких условиях можно использовать энтропию, как функцию, определяющую направление процесса?

13. Какова зависимость энтропии реакции от условий протекания процесса (влияние температуры, давления, объема)?

14. Как рассчитывается энтропия реакции?

15. Зачем были введены термодинамические потенциалы?

16. Каков физический смысл энергии Гиббса, энергии Гельмгольца?

17. В каких системах изменение изобарно – изотермического потенциала может служить мерой направленности физико – химических процессов?

18. В каких системах изменение изохорно – изотермического потенциала может служить мерой направленности физико – химических процессов?

19. За счет чего совершается максимально полезная работа химической реакции при постоянном давлении и температуре

20. В каких реакциях энергия Гиббса и энергия Гельмгольца приобретают одинаковые значения?

21. Как зависит от температуры изменение энергии Гиббса химической реакции?

22. Процесс протекает в условиях постоянства температуры и давления в закрытых системах. Какой термодинамический потенциал следует выбрать в качестве критерия протекания самопроизвольного процесса в этих условиях?

23. Как изменяется энергия Гиббса, если в закрытой системе протекает реакция слева направо при постоянном давлении и температуре?

24. Как изменится энергия Гиббса, если в закрытой системе при постоянном давлении и температуре реакция протекает справа налево?

25. Жидкость превращается в пар при определенной температуре и давлении. Каково соотношение между DG и DF этого процесса?

26. За счет чего совершается максимальная полезная работа химической реакции при постоянном объеме и температуре?

27. Какой термодинамический потенциал следует выбрать в качестве критерия направления реакции, если она протекает в закрытом автоклаве при постоянной температуре? Каково условие самопроизвольного течения процесса, выраженное при помощи этого потенциала?

28. Как энергия Гельмгольца (изохорно – изотермический потенциал) системы зависит от объема при постоянной температуре (если единственный вид работы – работа расширения)? Напишите математическое выражение зависимости.

29. При каких постоянных термодинамических параметрах изменение энтальпии DН может служить критерием направления самопроизвольного процесса? Какой знак DН в этих условиях указывает на самопроизвольный процесс?

30. Равновесная система состоит из трех частей, каждая из которых обладает определенной энтропией: S 1 , S 2 , S 3 . Как можно выразить энтропию системы в целом?

31. Как изменяется энергия Гельмгольца (изохорно – изотермический потенциал) при изотермическом сжатии газа в идеальном состоянии?


Третий закон термодинамики

Анализируя изменения тепловых эффектов и изотермических потенциалов в области низких температур, Нернст в 1906 году высказал предположение, что при приближении к абсолютному нулю значения тепловых эффектов и изотермического потенциала сближаются, и кривые DH = f(T) и DG = f(T) при Т = 0 касаются друг друга и имеют общую касательную (рис.3). Постулат Нернста (тепловая теорема Нернста) справедлив лишь для систем, состоящих из кристаллических веществ.

В математической форме это утверждение выражаетсятак: вблизи абсолютного нуля в реакциях, протекающих в конденсированных системах при Т = 0 ,

и . (69)

Уравнения (69) и (70) являются математическим выражением третьего закона термодинамики.

В соответствии с уравнением (60) из уравнения Нернста следует, что вблизи абсолютного нуля реакции в конденсированных системах не сопровождаются изменением энтропии, т.е. для них DS = 0.

Рис. 3. Относительное положение

кривых DH=f(T) и DG=f(T ) в области

низких температур

Планк в 1912 году предположил, что энтропия правильно сформированного кристалла любого чистого вещества при абсолютном нуле равна нулю (постулат Планка).

Правильно сформированный кристалл - это кристалл с идеальной кристаллической решеткой. Математическое выражение постулата Планка:

Такая зависимость отсутствует в твердых растворах и стеклообразных веществах.

И постулат Планка, и теорема Нернста – оба этих утверждения и являются третьим законом термодинамики, который получил широкое применение для определения абсолютных значений энтропий чистых веществ:

Из приведенного уравнения (71) следует, что в области температур, близких к нулю, теплоемкость веществ тоже стремится к нулю:

Это утверждение основывается на результатах многочисленных измерений теплоемкостей различных веществ при низких температурах.

При дальнейшем развитии термодинамики выяснился условный характер постулата Планка. Было найдено, что при абсолютном нуле некоторые составляющие энтропии, связанные со спинами ядер и изотопным эффектом, не становятся равными нулю. При обычных химических реакциях эти составляющие не меняются, поэтому их практически можно не учитывать. Для таких реакций выводы постулата Планка не нуждаются в уточнении. Однако сам постулат приобретает характер условного допущения.


Варианты заданий для расчетных работ

Определить DH, DU, DS, DF, DG реакций при постоянном давлении

Р = 1,013 10 5 Па и заданной температуре.

№ п/п Уравнение реакции T , K
Fe 2 O 3(т) + 3CO (г) = 2Fe (т) + 3CO 2(г)
CaO (т) + CO 2(г) = CaCO 3(т)
Fe 2 O 3(т) + 3C (т) = 2Fe (т) + 3CO (г)
Al 2 O 3(т) + 3SO 3(г) = Al 2 (SO 4) 3(т)
2Fe 2 O 3(т) + 3C (т) = 4Fe (т) + 3CO (г)
Na 2 CO 3(т) + H 2 SO 4(ж) = Na 2 SO 4(т) + H 2 O (ж) + CO 2(г)
SO 3(г) + H 2 O (ж) = H 2 SO 4(ж)
Na 2 CO 3(т) + Ca(OH) 2(т) = CaCO 3(т) +2NaOH (т)
CaCO 3(т) = CaO (т) + CO 2(г)
2K + H 2 SO 4(ж) = K 2 SO 4(т) + H 2(г)
Ba(OH) 2(т) + 2HNO 3(г) = Ba(NO 3) 2(т) + H 2 O (ж)
2FeS (т) + 3,5O 2(г) = Fe 2 O 3(т) + 2SO 2(г)
4HCl (г) + O 2(г) = 2H 2 O (ж) + 2Cl 2(г)
NH 4 Cl (т) = NH 3(г) + HCl (г)
2N 2(г) + 6H 2 O (г) = 4NH 3(г) + 3O 2(г)
2H 2(г) + CO (г) = CH 4 O (г) (метанол)
0,5S 2(г) + 2H 2 O (ж) = SO 2(г) + 2H 2(г)
0,5S 2 (г) + 2CO 2(г) = SO 2(г) + 2CO (г)
SO 2(г) + Cl 2(г) = SO 2 Cl 2(г)
4NO (г) + 6H 2 O (г) = 4NH 3(г) + 5O 2(г)
2H 3 PO 4(ж) + Ca(OH) 2(т) = Ca(H 2 PO 4) 2 + 2H 2 O (ж)
2KOH (т) + H 2 SO 4(ж) = K 2 SO 4(т) + H 2 O (г)
SO 2(г) + 2CO (г) = S (ромб) + 2CO 2(г)
K 2 CO 3(т) + 2HNO 3(ж) = 2KNO 3(т) + H 2 O (ж) + CO 2(г)
NaI (т) + HCl (г) = NaCl (т) + HI (г)
Ca(OH) 2(т) + 2HCl (г) = CaCl 2(т) + 2H 2 O (ж)
Ba(OH) 2(т) + H 2 SO 4(ж) = BaSO 4(т) + 2H 2 O (ж)
BeO (т) + H 2 SO 4(ж) = BeSO 4(т) + H 2 O (ж)
Al 2 O 3(т) + 6HCl (г) = 2AlCl 3(т) + 3H 2 O (г)
CuO (т) + H 2 S (г) = CuS (т) +H 2 O (г)
CuO (т) + 2HCl (г) = CuCl 2(т) + H 2 O (ж)
2CO (г) + 3H 2(г) = H 2 O (ж) + C 2 H 4 O (г) (ацетальдегид)
Ag 2 O (т) + 2HNO 3(ж) = 2AgNO 3(т) + 2H 2 O (ж)
CO 2(г) + 2NH 3(г) = H 2 O (ж) + CH 4 N 2 O (т) (карбамид)
NaNO 3(т) + KCl (т) = NaCl (т) + KNO 3(т)
4NH 3(г) + 4NO 2(г) + 2H 2 O (ж) + O 2(г) = 4NH 4 NO 3(т)
(NH 4) 2 SO 4(т) + Ba(NO 3) 2 = BaSO 4(т) + 2NH 4 NO 3(т)
(NH 4) 2 SO 4(т) + CaCl 2(т) = CaSO 4(т) + 2NH 4 Cl (т)

Окончание

№ п/п Уравнение реакции T , K
C 2 H 2(г) + H 2 O (ж) = C 2 H 4 O (г) (ацетальдегид)
CH 4(г) + HNO 3(ж) = H 2 O (ж) + CH 3 NO 2(г) (нитрометан)
8Al (т) + 3Fe 3 O 4(т) = 9Fe (т) + 4Al 2 O 3(т)
2NH 4 NO 3(т) = 4H 2 O (ж) + O 2(г) + 2N 2(г)
C 2 H 2(г) + 2H 2 O (ж) = CH 3 COOH (ж) + H 2(г)
CH 4(г) + 2H 2 S (г) = CS 2(г) + 4H 2(г)
H 2 S (г) + CO 2(г) = H 2 O (г) + COS (г)
2NaHCO 3(т) = Na 2 CO 3(т) + H 2 O (г) + CO 2(г)
Zn(OH) 2(т) + CO 2(г) = ZnCO 3(т) + H 2 O (ж)
ZnS (т) + H 2 SO 4(ж) = ZnSO 4(т) + H 2 S (г)
2AgNO 3(т) = 2Ag (т) + O 2(г) +2NO 2(г)
2KMnO 4(т) + 3H 2 O 2(г) = 2MnO 2(т) + 2KOH (т) + 3O 2(г) + 2H 2 O (ж)
KClO 3(т) + H 2 O 2(г) = KCl (т) + 2O 2(г) + H 2 O (ж)
3Cl 2(г) + 6KOH (т) = KClO 3(т) + 3H 2 O (ж) + 5KCl (т)
4Cl 2(г) + H 2 S (г) + 4H 2 O (ж) = 8HCl (г) + H 2 SO 4(ж)
2KOH (т) + MnO (т) + Cl 2(г) = MnO 2 + 2KCl (т) + H 2 O (ж)
P (т) + 5HNO 3(ж) = H 3 PO 4(ж) + 5NO 2(г) + H 2 O (ж)
Cu (т) + 2H 2 SO 4(ж) = CuSO 4(т) + SO 2(г) + 2H 2 O (ж)
PbS (т) + 4H 2 O 2(г) = PbSO 4(т) + 4H 2 O (ж)
8HJ (г) + H 2 SO 4(ж) = 4J 2 + H 2 S (г) + 4H 2 O (ж)
Ca(OH) 2(т) + H 2 S (г) = CaS (т) + 2H 2 O (ж)
P 2 O 5(т) + 3H 2 O (ж) = 2H 3 PO 4(ж)

ЛАБОРАТОРНЫЙ ПРАКТИКУМ

При решении задач этого раздела см. табл. 5-7.

Направление, в котором самопроизвольно могут протекать реакции, определяется совместным действием двух тенденций:

    стремлением системы к переходу в состояние с наименьшей энергией;

    стремлением к наиболее вероятному состоянию.

Первая тенденция характеризуется величиной ∆Н, т.е. самопроизвольно протекают реакции, сопровождающиеся уменьшением энтальпии (∆Н < 0). Действительно, все экзотермические реакции протекают самопроизвольно.

Однако известно достаточно большое число самопроизвольных эндотермических реакций, протекание которых противоречит энергетическому принципу, и может быть обусловлено только стремлением к системы к наиболее вероятному состоянию. В термодинамике доказывается, что наиболее вероятным является наиболее неупорядоченное состояние, связанное с хаотичным движением частиц (молекул, ионов, атомов). Мерой наиболее вероятного (неупорядоченного) состояния системы является термодинамическая функция состояния энтропия S. В изолированных системах процессы протекают самопроизвольно в сторону увеличения энтропии.

Таким образом, с одной стороны, система стремится к уменьшению энтальпии, т.е. к упорядочению, с другой стороны, система стремится к росту энтропии, к беспорядку.

Энтропия возрастает при переходе вещества из кристаллического состояния в жидкое и из жидкого в газообразное; при растворении веществ; при химических реакциях, приводящих к увеличению числа частиц, особенно в газообразном состоянии. Поскольку энтропия является функцией состояния, ее изменение (S) зависит только от начального (S 1) и конечного (S 2) состояний и не зависит от пути процесса:

Если S 2 >S 1 , то S > 0. Если S 2

Для химической реакции: S хр = S 0 прод - S 0 исх.

Энтропия выражается в Дж/(моль. К).

Очевидно, что, характеризуя две противоположные тенденции процесса, энтальпия или энтропия, взятые по отдельности, не могут служить критерием его самопроизвольного протекания. Функцией состояния, учитывающей обе тенденции, является энергия Гиббса G :

G = H T S (1)

или ∆H = ∆G + T ∆S. (2)

Из уравнения (2) следует, что энтальпия химической реакции состоит из двух слагаемых. Первое - ∆G представляет собой ту часть энергии, которая может быть превращена в работу. Поэтому энергию Гиббса иногда называют свободной энергией.

Второе слагаемое – это та часть энергии, которую невозможно превратить в работу. Произведение T·∆S называют рассеянной или связанной энергией, она рассеивается в окружающую среду в виде теплоты.

Энергия Гиббса при постоянном давлении и температуре служит критерием самопроизвольного протекания любого процесса, в том числе и химической реакции. Самопроизвольно протекающие процессы идут в сторону уменьшения потенциала и, в частности, в сторону уменьшения G. Если G < 0, процесс принципиально осуществим; если G > О, процесс самопроизвольно проходить не может. Чем меньше G, тем сильнее стремление к протеканию данного процесса и тем дальше он от состояния равновесия, при котором G = 0 и H= T·S.

Химическая реакция принципиально возможна, если энергия Гиббса уменьшается G <0 . Если ∆G>0, реакция не может протекать самопроизвольно в прямом направлении. Это неравенство свидетельствует о термодинамической возможности самопроизвольного протекания обратной реакции.

Из соотношения (1) видно, что самопроизвольно могут протекать и процессы, для которых H>0 (эндотермические). Это возможно, когда ΔS > 0, но│∆H <T∆S│, например, при высоких температурах, и тогда G < 0.

С другой стороны, экзотермические реакции (H<0) самопроизвольно не протекают, если при S<0 │∆H│>T∆S, следовательно G>0. Эндотермические реакции, сопровождающиеся уменьшением энтропии, в принципе невозможны. Протекание экзотермических реакций с увеличением энтропии термодинамически возможно при любых температурах.

Энергия Гиббса является функцией состояния, поэтому изменение энергии Гиббса в результате протекания химической реакции при стандартных условиях вычисляется по формуле

G хр. = G-G, (3)

а при любых других температурах – по уравнению (1).

Пример 1. В каком состоянии энтропия 1 моль вещества больше при одинаковой температуре: в кристаллическом или парообразном?

Решение. Энтропия есть мера неупорядоченности состояния вещества. В кристалле частицы (атомы, ионы) расположены упорядоченно и могут находиться лишь в определенных точках пространства, а для газа таких ограничений нет. Объем 1 моль газа гораздо больше объема 1 моль кристаллического вещества; возможность хаотичного движения молекул газа больше. А так как энтропию можно рассматривать как количественную меру хаотичности атомно-молекулярной структуры вещества, то энтропия 1 моль паров вещества больше энтропии 1 моль его кристаллов при одинаковой температуре.

Пример 2. Прямая или обратная реакция будет протекать при стандартных условиях в системе

СН 4 (г) + СО 2 2СО(г) + 2H 2 (r)

Решение. Вычислим G прямой реакции. Значения G соответствующих веществ приведены в табл. 6. Зная, что G есть функция состояния и что G для простых веществ, находящихся в устойчивых при стандартных условиях агрегатных состояниях, равны нулю, находим G процесса:

G = 2(-137,27) + 2(0) - (-50,79 - 394,38) = + 170,63 кДж.

То, что G > 0, указывает на невозможность самопроизвольного протекания прямой реакции при Т = 298 К и Р = 1,013∙10 5 Па.

Таблица 6. Стандартные энергии Гиббса образования G некоторых веществ

Вещество

Состояние

G,кДж/моль

Вещество

Состояние

G, кДж/моль

Таблица 7. Стандартные абсолютные энтропии S 0 298 некоторых веществ

Вещество

Состояние

S,Дж/(моль. К)

Вещество

Состояние

S,Дж/(моль. К)

Пример З. На основании стандартных теплот образования (табл. 5) и абсолютных стандартных энтропий веществ (табл. 7) вычислите G реакции, протекающей по уравнению

СО(г) + Н 2 О(ж) = СОз(г) + Н 2 (г).

Решение.  G° = H° - TS°; H и S - функции состояния, поэтому

H 0 х.р. = H 0 прод. - H 0 исх. ;

S 0 х. р. = S 0 прод. - S 0 исх. .

H 0 х. р. = (-393,51 + 0) - (-110,52 - 285,84) = +2,85 кДж;

S 0 х. р. = (213,65+130,59) -(197,91+69,94) =+76,39 = 0,07639 кДж/(моль∙К);

G 0 = +2,85 – 298 - 0,07639 = -19,91 кДж.

Пример 4. Реакция восстановления Fе 2 О 3 водородом протекает по уравнению

Fе 2 О 3 (к)+ ЗН 2 (г) = 2Fе(к) + ЗН 2 О(г); H= +96,61 кДж.

Возможна ли эта реакция при стандартных условиях, если изменение энтропии S = 0,1387 кДж/(моль. К)? При какой температуре начнется восстановление Fе 2 Оз?

Решение. Вычисляем G ° реакции:

G =H-TS= 96,61 - 298 . 0,1387 = +55,28 кДж.

Так как G > 0, то реакция при стандартных условиях невозможна; наоборот, при этих условиях идет обратная реакция окисления железа (коррозия). Найдем температуру, при которой G = 0:

H = TS; T=
К.

Следовательно, при температуре Т = 696,5 К (423,5 0 С) начнется реакция восстановления Fе 2 О 3 . Иногда эту температуру называют температурой начала реакции.

Пример 5. Вычислите H 0 , S 0 , G 0 , - реакции, протекающей по уравнению

Fе 2 Оз(к) + З С = 2 Fe + З СО.

Возможна ли реакция восстановления Fе 2 Оз углеродом при 500 и 1000 К?

Решение. H 0 х.р. и S 0 х.р. находим из соотношений (1)и (2):

H 0 х.р. = - [-822.10 + 30]= -331,56 + 822,10 = +490,54 кДж;

S 0 х.р. = (2 ∙ 27,2 +3 ∙·197,91) - (89,96 + 3 ∙ 5,69) = 541,1 Дж / (моль∙К).

Энергию Гиббса при соответствующих температурах находим из соотношения

G 500 = 490,54 – 500 = +219,99 кДж;

∆G 1000 = 490,54 –1000 = -50,56 кДж.

Так как G 500 > 0, а G 1000 < 0, то восстановление Fе 2 Оз возможно при 1000 К и невозможно при 500 К.

Для расчета стандартного изменения энтропии химической реакции А,.5° необходимо знать энтропию отдельных веществ. Для индивидуальных веществ может быть определено абсолютное значение энтропии на основе постулата, называемого третьим началом термодинамики: энтропия идеального кристалла при абсолютном нуле температуры равна нулю. Тогда по известной теплоемкости вещества можно вычислить энтропию при данной температуре по уравнению

Энтропия вещества последовательно возрастает при переходе от твердого к жидкому и газообразному состоянию, так как при этих фазовых переходах поглощается теплота и растет неупорядоченность. В химических реакциях энтропия возрастает особенно существенно при увеличении количества вещества газов. Поэтому знак AS можно определять «на глаз». Рассматривая реакцию

можно сказать, нс производя расчетов, что энтропия смеси в ходе реакции при постоянной температуре уменьшается, так как из 3 моль газа получается 2 моль газа.

В таблицы термодинамических свойств веществ вносятся значения стандартной энтропии , т.е. энтропии 1 моль вещества 5°, ДжДмольК), при стандартных условиях (приложение 3).

Для химической реакции стандартное изменение энтропии вычисляется по формуле, аналогичной расчету А,Н° по закону Гесса:

Таблицы термодинамических свойств веществ содержат также стандартные значения изменения энергии Гиббса образования сложных веществ из простых веществ, обозначаемые как AjG°. По этим данным рассчитывается стандартное изменение энергии Гиббса химической реакции A r G°:

Следует обратить внимание на то, что A r G° относится к одному обороту химической реакции в системе, находящейся в стандартном состоянии. Это понятие подразумевает концентрации всех веществ в растворе 1 моль/л или давление каждого газа в смеси 101,3 кПа. Отсюда следует, что A,.G изменяется по мере протекания реакции, так как изменяются концентрации веществ. Подробнее это разъясняется в следующей главе.

Расчет А Г С° производят как по табличным значениям AfG° веществ, участвующих в реакции, так и по предварительно вычисленным значениям А,Н° и Д,^, после чего применяют формулу (9.12) для изменения энергии Гиббса:

Пример 9.8. Рассчитайте двумя способами A r G° при 298,15 К для реакции оксида азота(П) с кислородом. Обсудите результат.

Решение. Напишем уравнение реакции и найдем необходимые табличные данные.


Рассчитаем изменения функций состояния для данной реакции:

Рассчитаем изменение энергии Гиббса но уравнению (9.12), обратив внимание на использование энергетических единиц (энтропия в Дж/К, энтальпия в кДж):

Расчет A r G° двумя способами дал практически совпадающие результаты. Поскольку расчет проведен для стандартного состояния, мы можем сказать, что в стандартном состоянии реакция идет самопроизвольно. В данной реакции изменение энтропии отрицательно, что можно обнаружить, просто рассматривая уравнение реакции (см. выше). Здесь энтропийный фактор не способствует протеканию реакции. Но изменение энтальпии тоже оказалось отрицательным (реакция экзотермическая) и способствующим протеканию реакции. В данном случае энергетический фактор контролирует направление реакции, так как абсолютное значение Д, Н° превысило слагаемое TA,.S°.

Пример 9.9. Имеется реакция 20 3 = 30 2 , для которой Л,.//° = 285,8 кДж и Д,.5° = = 137,8 Дж/К. Какая из двух реакций - прямая или обратная - идет самопроизвольно?

Решение. Из приведенных значений очевидно, что как энергетический, так и энтропийный факторы способствуют протеканию прямой реакции. Для нее заведомо получается отрицательное значение Д,.С°. Обратная реакция, т.е. образование озона, самопроизвольно идти не может. Однако озон образуется при облучении кислорода ультрафиолетовыми лучами.

Пример 9.10. Растворение хлорида натрия в воде, т.е. процесс

характеризуется следующими изменениями функций состояния: Д,.//° = +3,8 кДж/ моль, Д,S° = +43 ДжД.иоль- К), Д,.С° = -9,0 кДж/моль. Оцените роль отдельных факторов и приблизительную величину растворимости.

Решение. Здесь протеканию процесса растворения способствует только энтропийный фактор. Разрушение кристаллической структуры при растворении означает рост неупорядоченности. Это и выражается в увеличении энтропии. Для оценки растворимости снова надо вспомнить, что стандартные значения функций относятся к системе в стандартном состоянии. В данном случае эго раствор хлорида натрия с концентрацией 1 моль/л и кристаллы соли. Таким образом, растворение хлорида натрия идет самопроизвольно в одномолярном растворе, и растворимость, следовательно, превышает 1 моль/л.

В заключение главы рассмотрим понятие термодинамической устойчивости веществ. Об устойчивости или неустойчивости тех или иных веществ приходится говорить достаточно часто, и при этом не всегда ясно, о какой устойчивости идет речь. Коррозия железа означает, что этот металл неустойчив к действию воды и кислорода воздуха. Выделение газа при внесении питьевой соды в кипяток означает, что эта соль разлагается горячей водой. Эта же соль и без участия жидкой воды выделяет углекислый газ и пары воды при нагревании до 270 °С.

Под термодинамической устойчивостью подразумевается устойчивость вещества в данных условиях как такового, т.е. отсутствие у него превращений, идущих самопроизвольно (характеризующихся отрицательными значениями ArG) без участия других веществ.

Хлорид натрия ни в какое другое вещество превратиться не может. Это термодинамически устойчивое вещество. Другое хорошо известное вещество глюкоза, С 6 Н)2 0 6 , может подвергаться различным превращениям, среди которых, например, разложение на графит и воду:

Как видим, у этого превращения отрицательное значение A r G°, и оно должно идти самопроизвольно. Следовательно, глюкоза - термодинамически неустойчивое вещество. Неизбежно возникающий вопрос, почему же глюкоза может длительное время храниться, не превращаясь в другие вещества, будет рассмотрен в гл. 11.

Это величина, которая показывает уровень изменения энергии в процессе химической реакции, и в результате дающая ответ на вопрос о возможности протекания химических реакций. Такой потенциал можно принимать за полную химическую энергию системы (жидкости, кристалла и т. д.). Свободная энергия Гиббса широко применяется в химии и термодинамике.

Самопроизвольное протекание определено следующими факторами: энтальпийным и энтропийным. Первый связан с уменьшением энтальпии системы, а второй обусловлен увеличением уровня беспорядка внутри системы вследствие повышения ее энтропии. Разность описанных термодинамических факторов и является функцией состояний системы, которая известна как изобарно-изотермический потенциал, или свободная энергия Гиббса (G, кДж).

Самопроизвольность протекания процесса в системе открытого и закрытого типа описывается специальным критерием, получившим название потенциал Гиббса. По сути, он представляет собой функцию состояния. Д. У. Гиббс, когда работал с термодинамическими системами, вывел эту функцию через энтальпию и энтропию. Свободная энергия Гиббса позволяет предсказывать направление протекания самопроизвольного биологического процесса, а также оценивать его теоретически достижимый коэффициент полезного действия.

Применительно ко второму выводы Гиббса можно сформулировать следующим образом: при постоянных значениях давления и температуры без воздействия извне система будет поддерживать уровень самопроизвольного протекания только для процессов, вследствие которых произойдет уменьшение значения потенциала Гиббса до уровня, который наступит по достижении ним установившегося минимума. Итак, системы определяет неизменность свободной энергии. Поэтому потенциал Гиббса представляет собой свободную энтальпию в изобарно-изотермической системе. Поясним, почему указывается именно минимум. Это объясняется важнейшим постулатом равновесия в термодинамике, а именно: данное состояние при условии постоянного давления и температуры означает, что для следующего изменения требуется увеличивать уровень энергии, а это возможно только при изменении внешних факторов.

А что же понимают под свободной энергией? Под этим термином подразумевают процесс получения неограниченного количества энергии без или с незначительными затратами энергии. То есть энергия, полученная от гидроэлектростанции, ветрогенератора, - это свободная энергия, потому как мы не тратили энергию на то, чтобы солнечные лучи падали на землю, вода в реке текла или дул ветер. Подобных источников вокруг нас существует огромное множество, большинство из них еще неизвестны науке. Вот на них время от времени и «натыкаются» разные изобретатели-экспериментаторы. Одним из таких изобретений стала свободная энергия Тесла. Как считал ученый, энергия, которую он получал, брала свое начало из эфира (вакуума). Жаль, что его изобретение так и не было доведено до логического конца. Однако подобные открытия продолжают совершаться, этот процесс не остановить. На сегодняшний день существует множество патентов на изобретения, основа которых - свободная энергия. Схема одного из таких устройств приведена выше.

В процессе химических реакций действуют две тенденции:

1.Н min (энтальпийный фактор);

2.S max (энтропийный фактор).

Оба эти фактора действуют во взаимно-противоположных направлениях и течение реакции определяется тем из них, который преобладает в данном конкретном случае. Изменение энтальпии и энтропии при химической реакции учитывает энергия Гиббса ∆G 0 (кДж): ∆G 0 = ∆Н 0 – Т∆S 0 , где Т – абсолютная температура, ∆S 0 . стандартное изменение энтропии; ∆Н 0 – стандартное изменение энтальпии.

Величина и знак G определяют возможность самопроизвольного протекания химической реакции и ее направление. При постоянной температуре и давлении реакция самопроизвольно протекает в том направлении, которому отвечает убыль энергии Гиббса.

G < 0 - реакция идет самопроизвольно в прямом направлении;

G > 0 - при данных условиях реакция в прямом направлении не идет;

G = 0 - реакция обратима (химическое равновесие).

Изменение ∆ r G не зависит от пути процесса и может быть рассчитано по следствию из закона Гесса: изменение энергии Гиббса в результате химической реакции равно сумме энергий Гиббса образования продуктов реакции за вычетом суммы энергий Гиббса образования исходных веществ.

R G 0 = Σ∆ f G 0 продуктов реакции – Σ∆ f G 0 исходных веществ,

где ∆ f G 0 – стандартная энергия Гиббса образования, кДж/моль; справочная величина. ∆ f G 0 простых веществ равна нулю.

Лекция № 6. СКОРОСТЬ ХИМИЧЕСКИХ РЕАКЦИЙ

Химическая кинетика - раздел химии, изучающий скорость и механизм химических реакций. Скоростью химической реакции называют изменение количества реагирующего вещества за единицу времени в единице объема (для гомогенной реакции) или на единице поверхности раздела фаз (для гетерогенной системы).Скорость реакции зависит от природы реагирующих веществ, их концентрации, температуры, присутствия катализаторов.

Зависимость скорости химической реакции от природы реагирующихвеществ обусловлена тем, что каждая реакция характеризуется определенным значением энергии активации. Реакции протекают в направлении разрушения менее прочных связей и образования веществ с более прочными связями. Для того чтобы разрушить одну связь и образовать другую связь, необходимы определенные энергетические затраты. Энергия активации Е а – это та избыточная энергия, которой должны обладать молекулы для того чтобы их столкновение могло привести к образованию нового вещества. Если энергия активации очень мала (< 40 кДж/моль), то реакция идет с очень большой скоростью, если энергия активации очень велика (>120 кДж/моль), то скорость реакции неизмеримо мала.



Зависимость скорости реакции от концентрации реагирующих веществ выражается законом действия масс (ЗДМ) : при постоянной температуре скорость химической реакции прямо пропорциональна произведению концентраций реагирующих веществ.

В общем случае для гомогенной реакции nA (г) + mB (г) = pAB (г)

зависимость скорости реакции от концентрации выражается уравнением:

,

где С А и С В – концентрации реагирующих веществ, k – константа скорости реакции. Для конкретной реакции 2NO (г) + O 2(г) = 2NO 2(г) математическое выражение ЗДМ имеет вид: υ = k∙∙

Константа скорости реакции k зависит от природы реагирующих веществ, температуры и катализатора, но не зависит от значения концентраций реагентов. Физический смысл константы скорости заключается в том, что она равна скорости реакции при единичных концентрациях реагирующих веществ.

Для гетерогенных реакций скорость реакции зависит только от концентрации газов или растворенных веществ, а концентрация твердой фазы в математическое выражение ЗДМ не входит. Например, скорость реакции горения углерода в кислороде пропорциональна только концентрации кислорода:

С (к) + О 2(г) = СО 2(к) , υ = k·

Зависимость скорости реакции от температуры. При повышении температуры увеличивается скорость движения молекул, что приводит в свою очередь к увеличению числа столкновений между ними.. Повышение температуры увеличивает число активных молекул, и, следовательно, увеличивает скорость химической реакции.

Зависимость скорости химической реакции от температуры выражается правилом Вант-Гоффа : при повышении температуры на каждые 10 °C скорость реакции возрастает в 2-4 раза .

,

где υ 2 и υ 1 – скорости реакций при температурах t 2 и t 1 ,

γ – температурный коэффициент скорости реакции, показывающий во сколько раз увеличивается скорость реакции при повышении температуры на 10 0 С

Более строго зависимость скорости реакции от температуры описывается уравнением Аррениуса , которое связывает константу скорости реакции с энергией активации:

где А – это постоянный множитель, который равен числу столкновений молекул в единицу времени, умноженному на вероятность химического взаимодействия при столкновении.

Зависимость скорости реакции от катализатора. Вещества, увеличивающие скорость реакции, а сами остающиеся после нее химически неизменными , называются катализаторами . Изменение скорости реакции под действием катализаторов называется катализом . Различают катализ гомогенный и гетерогенный .

Если реагирующие вещества и катализатор находится в одном и том же агрегатном состоянии, то катализ гомогенный :

2SO 2(г) + O 2(г) 2SO 3(г)

Если реагирующие вещества и катализатор находится в различных агрегатных состояниях, то катализ гетерогенный :

N 2(г) + 3H 2(г) 2NH 3(г)

Действие катализатора заключается в том, что он уменьшает энергию активации, и при этом увеличивается скорость реакции.

Лекция № 7. ХИМИЧЕСКОЕ РАВНОВЕСИЕ

Химические реакции делятся на необратимые и обратимые . Необратимые протекают только в прямом направлении (до полного израсходования одного из реагирующих веществ), обратимые протекают как в прямом, так и в обратном направлениях (при этом ни одно из реагирующих веществ не расходуется полностью). Рассмотрим следующую реакцию:

Математическое выражение закона действия масс для скорости прямой υ пр и обратной υ обр реакций имеет вид:

υ пр = υ обр =

В момент смешивания веществ А и В скорость прямой реакции будет максимальной. Затем вещества А и В постепенно расходуются и скорость прямой реакции уменьшается. Получившиеся вещества D и F начнут реагировать друг с другом, и скорость обратной реакции будет непрерывно возрастать по мере увеличения концентрации веществ D и F. В определенный момент времени скорость прямой реакции станет равна скорости обратной реакции.

Состояние системы, при котором скорость прямой реакции (υ 1) равна скорости обратной реакции (υ 2) , называетсяхимическим равновесием. Концентрации реагирующих веществ, которые устанавливаются при химическом равновесии, называются равновесными .

Закон действия масс для обратимых процессов : в состоянии химического равновесия при неизменной температуре отношение произведения концентраций продуктов реакции к произведению концентраций исходных веществ есть величина постоянная . Эта величина называется константой равновесия . Равновесные концентрации принято обозначать не символом «С А », а формулой вещества, помещенной в квадратные скобки, например, , а константу равновесия, выражаемую через концентрации – К С. Для обратимой реакции aA+bB dD + fF математическое выражение закона действия масс имеет вид:

.

Для конкретной гомогенной реакции:

2СО (г) + О 2(г) ↔ 2СО 2(г)

Для гетерогенной реакции СО 2(г) + С (к) = 2СО (г) . Концентрация твердой фазы в математическое выражение ЗДМ для гетерогенных систем не входит.

Химическое равновесие неизменно до тех пор, пока условия равновесия (концентрация, температура, давление ), сохраняются постоянными. При изменении условий равновесие нарушается. Через некоторое время в системе вновь наступает равновесие, характеризующееся новым равенством скоростей и новыми равновесными концентрациями всех веществ. Переход системы из одного равновесного состояния в другое называется смещением равновесия .

Направление смещения равновесия определяется принципом Ле Шателье : если на систему, находящуюся в равновесии, оказывается внешнее воздействие (изменяется концентрация, давление, температура), то равновесие смещается в сторону той реакции, которое ослабляет произведенное воздействие.