Домой / Лицо / 3 закон ньютона определение и формула. Первый закон ньютона

3 закон ньютона определение и формула. Первый закон ньютона

«Физика - 10 класс»

Какое явление называют инерцией?
Что называют системой отсчёта?

Закон инерции относится к самому простому случаю движения - движению тела, которое не взаимодействует с другими телами, т. е. движению свободного тела.

Ответить на вопрос, как же движутся свободные тела, не обращаясь к опыту, нельзя. Однако нельзя поставить ни одного опыта, который бы в чистом виде показал, как движется ни с чем не взаимодействующее тело, так как таких тел нет. Как же быть?

Имеется лишь один выход. Надо поместить тело в условия, при которых влияние внешних взаимодействий можно делать всё меньшим и меньшим, и наблюдать, к чему это ведёт. Можно, например, наблюдать за движением гладкого камня на горизонтальной поверхности, после того как ему сообщена некоторая скорость. (Притяжение камня к Земле компенсируется действием поверхности, на которую он опирается; на скорость его движения влияет только трение.) При этом легко обнаружить, что, чем более гладкой является поверхность, тем медленнее будет уменьшаться скорость камня. На гладком льду камень скользит весьма долго, не меняя заметно скорость. На основе подобных наблюдений можно сделать вывод: если бы поверхность была идеально гладкой, то при отсутствии сопротивления воздуха (в вакууме) камень совсем не менял бы своей скорости. Именно к такому выводу пришёл впервые Галилей.


Первый закон Ньютона:

Существуют системы отсчёта, называемые инерциальными, относительно которых тело движется прямолинейно и равномерно, если на него не действуют другие тела.


Первыи закон, или закон инерции, как его часто называют, фактически был открыт Галилеем, но строгую формулировку дал и включил его в число основных законов механики Исаак Ньютон.

Этот закон, с одной стороны, содержит определение инерциальной системы отсчёта. С другой стороны, он содержит утверждение (которое с той или иной степенью точности можно проверить на опыте) о том, что инерциальные системы отсчёта существуют в действительности.


Инерциальные и неинерциальные системы отсчёта


До сих пор систему отсчёта мы связывали с Землёй, т. е. рассматривали движение относительно Земли. В системе отсчёта, связанной с Землёй, ускорение тела определяется только действием на него других тел. Система отсчёта, связанная с Землёй, является инерциальной.

Из формулировки первого закона следует, что если есть одна инерциальная система отсчёта, то любая другая движущаяся относительно неё прямолинейно и равномерно также является инерциальной.

Однако помимо инерциальных систем отсчёта, есть и другие, в которых тело имеет ускорение даже в том случае, когда на него другие тела не действуют.

В качестве примера рассмотрим систему отсчёта, связанную с автобусом. При равномерном движении автобуса пассажир может не держаться за поручень, действие со стороны автобуса компенсируется взаимодействием с Землёй. При резком торможении автобуса стоящие в проходе пассажиры падают вперёд, получая ускорение относительно стенок автобуса (рис. 2.6). Однако это ускорение не вызвано какими-либо новыми воздействиями со стороны Земли или автобуса непосредственно на пассажиров. Относительно Земли пассажиры сохраняют свою постоянную скорость, но автобус начинает двигаться с ускорением, и пассажиры относительно него также движутся с ускорением. Ускорение появляется вследствие того, что движение их рассматривается относительно тела отсчёта (автобуса), движущегося с ускорением.


Рассмотрим маятник, находящийся на вращающемся диске (рис. 2.7). Нить маятника отклонена от вертикали, хотя сам он неподвижен относительно диска. Натяжение нити не может быть скомпенсировано силой притяжения к Земле. Следовательно, отклонение маятника нельзя объяснить только его взаимодействием с телами.

Рассмотрим ещё один маятник, находящийся в неподвижном вагоне. Нить маятника вертикальна (рис. 2.8, а). Шарик взаимодействует с нитью и Землёй, сила натяжения нити равна силе тяжести. С точки зрения пассажира в вагоне и человека, стоящего на перроне, шарик находится в равновесии вследствие того, что сумма сил, действующих на него, равна нулю.

Как только вагон начинает двигаться с ускорением, нить маятника отклоняется (шарик по инерции стремится сохранить состояние покоя). С точки зрения человека, стоящего на перроне, ускорение шарика должно быть равно ускорению вагона, так как нить не разрывается и шарик движется вместе с вагоном. Шарик по-прежнему взаимодействует с теми же телами, сумма сил этого взаимодействия должна быть отлична от нуля и определять ускорение шарика.

С точки зрения пассажира, находящегося в вагоне, шарик неподвижен, следовательно, сумма сил, действующих на шарик, должна быть равна нулю, однако на шарик действуют те же силы - натяжения нити и сила Рис. 2.8 тяжести. Значит, на шарик (рис. 2.8, б) должна действовать сила ин, которая определяется тем, что система отсчёта, связанная с вагоном, неинерциальная. Эту силу называют силой инерции (см. рис. 2.8, б).

В неинерциальных системах отсчёта основное положение механики о том, что ускорение тела вызывается действием на него других тел, не выполняется.

Системы отсчёта, в которых не выполняется первый закон Ньютона, называются неинерциальными .

Изучение явлений природы на основании эксперимента возможно только при условии соблюдения всех этапов: наблюдение, гипотеза, эксперимент, теория. Наблюдение позволит выявить и сопоставить факты, гипотеза дает возможность дать им подробное научное пояснение, требующее экспериментального подтверждения. Проведение наблюдения за движением тел привело к интересному выводу: изменение скорости тела возможно только под действием другого тела.

К примеру, если быстро бежать по лестнице, то на повороте просто необходимо ухватиться за перила (изменение направления движения), либо приостановиться (изменением величины скорости), чтобы не столкнуться с противоположной стеной.

Наблюдения за аналогичными явлениями привело к созданию раздела физики, изучающего причины изменения скорости тел или их деформации.

Основы динамики

Ответить на сакраментальный вопрос о том, почему физическое тело движется тем или иным образом или покоится, призвана динамика.

Рассмотрим состояние покоя. Исходя из понятия можно сделать вывод: нет и не может быть абсолютно неподвижных тел. Любой предмет, будучи неподвижным по отношению к одному телу отсчета, движется относительно другого. К примеру, книга, лежащая на столе, неподвижна относительно стола, но если рассмотреть ее положение по отношению к проходящему человеку, то делаем естественный вывод: книга движется.

Поэтому рассматриваются в инерциальных системах отсчета. Что это такое?

Инерциальной называется система отсчета, в которой тело покоится или выполняет равномерное и при условии отсутствия воздействия на него иных предметов или объектов.

В приведенном выше примере система отсчета, связанная со столом, может быть названа инерциальной. Человек, движущийся равномерно и прямолинейно, может служить телом отсчета ИСО. Если его движение будет ускоренным, то связать с ним инерциальную СО нельзя.

По сути, такую систему можно соотнести с телами, жестко закрепленными на поверхности Земли. Однако сама планета не может служить телом отсчета для ИСО, так как равномерно вращается вокруг собственной оси. Тела на поверхности имеют центростремительное ускорение.

Что такое инерция?

Явление инерции напрямую связано с ИСО. Вспомните, что происходит, если движущийся автомобиль резко останавливается? Пассажиры подвергаются опасности, поскольку продолжают свое движение. Остановить его может кресло впереди либо ремни безопасности. Поясняют этот процесс инерцией пассажира. Так ли это?

Инерция - явление, предполагающее сохранение постоянной скорости тела при отсутствии воздействия на него других тел. Пассажир находится под действием ремней или кресел. Явление инерции здесь не наблюдается.

Объяснение кроется в свойстве тела, и, согласно ему, мгновенно изменить скорость того или иного предмета невозможно. Это - инертность. К примеру, инертность ртути в термометре позволяет опустить столбик, если мы встряхнем градусник.

Мерой инертности называют массу тела. При взаимодействии скорость быстрее меняется у тел с меньшей массой. Столкновение автомобиля с бетонной стеной для последней протекает практически бесследно. Автомобиль чаще всего претерпевает необратимые изменения: меняется скорость, происходит значительная деформация. Получается, что инертность бетонной стены значительно превышает инертность автомобиля.

Возможно ли в природе встретиться с явлением инерции? Условие, при котором тело находится без взаимосвязи с другими телами - глубокий космос, в котором движется космический корабль с выключенными двигателями. Но даже в этом случае гравитационный момент присутствует.

Основные величины

Изучение динамики на экспериментальном уровне предполагает проведение опыта с измерениями физических величин. Наиболее интересны:

  • ускорение как мера быстроты изменения скорости тел; обозначают ее буквой а, измеряют в м/с 2 ;
  • масса как мера инертности; обозначена литерой m, измеряется в кг;
  • сила как мера взаимного действия тел; обозначается чаще всего буквой F, измеряется в Н (ньютонах).

Взаимосвязь этих величин изложена в трех закономерностях, выведенных величайшим английским физиком. Законы Ньютона призваны объяснить сложности взаимодействия различных тел. А также процессы, ими управляющие. Именно понятия "ускорение", "сила", "масса" законы Ньютона связывают математическими соотношениями. Попробуем разобраться, что же это значит.

Действие только одной силы - явление исключительное. К примеру, искусственный спутник, движущийся по орбите вокруг Земли, находится под действием только силы притяжения.

Равнодействующая

Действие нескольких сил можно заменить одной силой.

Геометрическая сумма сил, воздействующих на тело, именуется равнодействующей.

Речь идет именно о геометрической сумме, поскольку сила - векторная величина, которая зависит не только от точки приложения, но и от направления действия.

К примеру, если необходимо передвинуть достаточно массивный шкаф, то можно пригласить друзей. Совместными усилиями достигается желаемый результат. Но можно пригласить только одного, очень сильного человека. Его усилие равно действию всех друзей. Сила, приложенная богатырем, может быть названа равнодействующей.

Законы движения Ньютона формулируются на основании понятия «равнодействующая».

Закон инерции

Начинают изучать законы Ньютона с наиболее часто встречающегося явления. Первый закон обычно называют законом инерции, поскольку он устанавливает причины равномерного прямолинейного движения или состояния покоя тел.

Тело перемещается равномерно и прямолинейно или покоится, если на него не осуществляют действия силы, либо это действие скомпенсировано.

Можно утверждать, что равнодействующая в этом случае равна нулю. В таком состоянии находится, к примеру, движущийся с постоянной скоростью автомобиль на прямолинейном участке дороги. Действие силы притяжения скомпенсировано силой а сила тяги двигателя по модулю равна силе сопротивления движению.

Люстра на потолке покоится, так как сила тяжести скомпенсирована силой натяжения ее креплений.

Скомпенсированными могут быть только те силы, которые приложены к одному телу.

Второй закон Ньютона

Равнодействующая сил, воздействующих на тело, определяется как произведение массы тела на приобретаемое под действием сил ускорение.

2 закон Ньютона (формула: F=ma), к сожалению, не устанавливает причинно-следственных связей между и динамики. Он не может с точностью указать, что является причиной появления ускорения тел.

Сформулируем иначе: ускорение, получаемое телом, прямо пропорционально равнодействующей сил и обратно пропорционально массе тела.

Так, можно установить, что изменение скорости происходит только в зависимости от силы, приложенной к нему, и массы тела.

2 закон Ньютона, формула которого может быть и такой: a = F/m, в векторном виде считают основополагающим, поскольку он дает возможность установить связь между разделами физики. Здесь, a - вектор ускорения тела, F - равнодействующая сил, m - масса тела.

Ускоренное движение автомобиля возможно, если сила тяги двигателей превышает силу сопротивления движению. С увеличением силы тяги возрастает и ускорение. Грузовые автомобили снабжаются двигателями большой мощности, ведь их масса значительно превышает массу легкового авто.

Болиды, созданные для скоростных гонок, облегчаются таким образом, что на них закрепляется минимум необходимых деталей, а мощность двигателей увеличивается до возможных пределов. Одной из важнейших характеристик спортивных авто является время разгона до 100 км/ч. Чем меньшее этот интервал времени, тем лучше скоростные свойства болида.

Закон взаимодействия

Законы Ньютона, основанные на силах природы, утверждают, что любое взаимодействие сопровождается появлением пары сил. Если шар висит на нити, то испытывает ее действие. При этом нить также растягивается под действием шара.

Завершает законы Ньютона формулировка третьей закономерности. Вкратце это звучит так: действие равно противодействию. Что это значит?

Силы, с которыми тела воздействуют друг на друга, равны по величине, противоположны по направлению и направлены вдоль линии, соединяющей центры тел. Интересно, что скомпенсированными их назвать нельзя, ведь действуют они на разные тела.

Применение законов

Знаменитая задача «Конь и телега» может поставить в тупик. Конь, запряженный в упомянутую повозку, сдвигает ее с места. В соответствии с третьим законом Ньютона, эти два объекта действуют друг на друга с равными по модулю силами, но на практике лошадь может сдвинуть телегу, что не укладывается в основы закономерности.

Решение найдется, если учесть, что эта система тел не замкнута. Дорога оказывает свое действие на оба тела. Сила трения покоя, действующая на копыта коня, превышает по значению силу трения качения колес телеги. Ведь момент движения начинается с попытки сдвинуть повозку. Если положение изменится, то конь ни при каких условиях не сдвинет её с места. Его копыта будут проскальзывать по дороге, и движения не будет.

В детстве, катая друг друга на санках, каждый мог столкнуться с таким примером. Если на санки сядут два-три ребенка, то усилий одного явно недостаточно, чтобы сдвинуть их с места.

Падение тел на поверхность земли, объясняемое Аристотелем («Каждое тело знает свое место») можно опровергнуть на основании вышеизложенного. Предмет движется к земле под действием такой же силы, что и Земля к нему. Сравнив их параметры намного больше массы тела), в соответствии со вторым законом Ньютона, утверждаем, что ускорение предмета во столько же раз больше ускорения Земли. Мы наблюдаем именно изменение скорости тела, Земля не смещается с орбиты.

Границы применимости

Современная физика законы Ньютона не отрицает, а лишь устанавливает границы их применимости. До начала XX века физики не сомневались в том, что эти законы объясняют все явления природы.

1, 2, 3 закон Ньютона полностью выявляет причины поведения макроскопических тел. Движение объектов с незначительными скоростями полностью описывается этими постулатами.

Попытка пояснить на их основании движение тел со скоростями, близкими к обречена на провал. Полное изменение свойств пространства и времени при этих скоростях не позволяет использовать динамику Ньютона. Кроме того, законы меняют свой вид в неинерциальных СО. Для их применения вводится понятие силы инерции.

Пояснить движение астрономических тел, правила их расположения и взаимодействия могут законы Ньютона. Закон всемирного тяготения вводится с этой целью. Увидеть же результат притяжения малых тел невозможно, ведь сила мизерна.

Взаимное притяжение

Известна легенда, согласно которой господина Ньютона, сидевшего в саду и наблюдавшего падение яблок, посетила гениальная идея: объяснить движение предметов вблизи поверхности Земли и движение на основании взаимного притяжения. Это не так далеко от истины. Наблюдения и точный расчет касались не только падения яблок, но и перемещения Луны. Закономерности этого движения приводят к выводам, что сила притяжения возрастает с увеличением масс взаимодействующих тел и уменьшается с увеличением расстояния между ними.

Опираясь на второй и третий законы Ньютона, закон всемирного тяготения формулируют следующим образом: все тела во вселенной притягиваются друг к другу с силой, направленной вдоль линии, соединяющей центры тел, пропорциональной массам тел и обратно пропорциональной квадрату расстояния между центрами тел.

Математическая запись: F = GMm/r 2 , где F - сила притяжения, M, m - массы взаимодействующих тел, r - расстояние между ними. Коэффициент пропорциональности (G = 6.62 х 10 -11 Нм 2 /кг 2) получил название гравитационной постоянной.

Физический смысл: эта постоянная равна силе притяжения между двумя телами массами по 1 кг на расстоянии 1 м. Понятно, что для тел небольших масс сила столь незначительна, что ею можно пренебречь. Для планет, звезд, галактик сила притяжения настолько огромна, что полностью определяет их движение.

Именно закон притяжения Ньютона утверждает, что для запуска ракет необходимо топливо, способное создать такую реактивную тягу, чтобы преодолеть влияние Земли. Скорость, необходимая для этого - первая космическая скорость, равная 8 км/с.

Современная технология изготовления ракет позволяет запускать беспилотные станции как искусственные спутники Солнца к другим планетам, чтобы их исследовать. Скорость, развиваемая таким аппаратом, - вторая космическая скорость, равная 11 км/с.

Алгоритм применения законов

Решение задач динамики подчиняется определенной последовательности действий:

  • Провести анализ задачи, выявить данные, вид движения.
  • Выполнить рисунок с указанием всех сил, действующих на тело, и направления ускорения (при его наличии). Выбрать систему координат.
  • Записать первый или второй законы, в зависимости от наличия ускорения тела, в векторной форме. Учесть все силы (равнодействующая сила, законы Ньютона: первый, если скорость тела не меняется, второй, если есть ускорение).
  • Уравнение переписать в проекциях на выбранные оси координат.
  • Если полученной системы уравнений недостаточно, то записать иные: определения сил, уравнения кинематики и т. п.
  • Решить систему уравнений относительно искомой величины.
  • Выполнить проверку размерностей, чтобы определиться с правильностью полученной формулы.
  • Вычислить.

Обычно этих действий вполне достаточно для решения любой стандартной задачи.

Кинематика – изучает движение тел, не рассматривая причины, которые это движение обуславливает.

Мат.точка – не имеет размеров, но в мат.точке сосредоточенна масса всего тела.

Поступательное – движение при котором прямая связанная с телом остаётся || самой себе.

Кинетические ур-я движения мат.точки:

Траектория – линия описываемая мат.точкой в пространстве.

Перемещение – приращение радиуса-вектора точки за рассматриваемый промежуток времени.

Скорость – Быстрота движения мат.точки.

Вектором средней скорости<> называется отношение приращения радиуса-вектора точки к промежутку времени.

Мгновенная скорость – величина, равная первой производной радиуса-вектора движущейся точки по времени.

Модуль мгновенной скорости равен первой производной пути по времени.

Компоненты равны производным от координат по времени.

Равномерное – движение при котором за равные промежутки времени тело проходит одинаковые пути.

Неравномерное – движение при котором скорость меняется как по модулю так и по направлению.

    Ускорение и его составляющие.

Ускорение – физ.величина, определяющая быстроту изменения скорости, как по модулю, так и по направлению.

Средним ускорением неравномерного движения в интервале времени от t до t+t называется векторная величина равная отношению изменения скорости к интервалу времениt: .Мгновенным ускорением мат.точки в момент времени t будет предел среднего ускорения. ..

определяет по модулю.

определяет по направлению.т.е. равна первой производной по времени от модуля скорости, определяя тем самым быстроту изменения скорости по модулю.

Нормальная составляющая ускорения направлена по нормали к траектории к центру её кривизны (поэтому её также называют центростремительным ускорением).

Полное ускорение тела есть геометрическая сумма тангенциальной и нормальной составляющих.

Если а н =?,а т =?

  1. 1,2,3 Законы Ньютона.

В основе Динамики мат.точки лежат три закона Ньютона.

Первый закон Ньютона – всякая материальная точка (тело) сохраняет состояние покоя или равномерного прямолинейного движения до тех пор, пока воздействие со стороны других тел не заставит её изменить это состояние.

Инертность – стремление тела сохранять состояние покоя или равномерного прямолинейного движения.

Законы Ньютона выполняются только в инерциальной системе отсчёта .

Инерциальная система отсчёта – система, которая либо покоится, либо движется равномерно и прямолинейно относительно какой то другой инерциальной системы.

Масса тела – физ.величина, являющаяся одной из основных характеристик материи, определяющая её инерционные (инертная масса) и гравитационные (гравитационная масса) св-ва.

Сила – векторная величина, являющаяся мерой механического воздействия на тело со стороны других тел или полей, в результате которого тело приобретает ускорение или изменяет свою форму и размеры.

Второй закон Ньютона – ускорение, приобретаемое материальной точкой (телом), пропорционально вызывающей его силе, совпадает с нею по направлению и обратно пропорционально массе материальной точки.

Импульс (кол-во движения) – векторная величина, численно равная произведению массы материальной точки на её скорость и имеющая направление скорости.

Более общая формулировка 2-го закона Н.(уравнение движения мт): скорость изменения импульса материальной точки равна действующей на неё силе.

Следствие из 2зН: принцип независимости действия сил: если на мт действует одновременно несколько сил, то каждая из этих сил сообщает мт ускорение согласно 2зН, как будто других сил не было.

Третий закон Ньютона. Всякое действие мт (тел) друг на друга, носит характер взаимодействия; силы, с которыми действуют друг на друга мт, всегда равны по модулю, противоположно направлены и действуют вдоль прямой, соединяющей эти точки.

    Импульс тела, сила. Закон сохранения импульса.

Внутренние силы – силы взаимодействия между мт механической системы.

Внешние силы – силы, с которыми на мт системы действуют внешние тела.

В механической системе тел, по 3-му закону Ньютона, силы, действующие между этими телами, будут равны и противоположно направлены, т.е. геометрическая сумма внутренних сил равна 0.

Запишем 2зН, для каждого из n тел механической системы(мс):

…………………

Сложим эти ур-я:

Т.к. геометрическая сумма внутренних сил мс по 3зН равна 0, то:

где - импульс системы.

В случае отсутствия внешних сил(замкнутая система):

, т.е.

Это и есть закон сохранения импульса : импульс замкнутой системы сохраняется, т.е. не изменяется с течением времени.

    Центр масс, движение центра масс.

Центр масс (центр инерции) системы мт называется воображаемая точка С , положение которой характеризует распределение массы этой системы.

Радиус-вектор этой точки равен:

Скорость центра масс (цм):

; , т.е. импульс системы равен произведению массы системы на скорость её центра масс.

Т.к. то:, т.е.:

Закон движения центра масс: центр масс системы движется как мт, в которой сосредоточена масса всей системы и на которую действует сила, равная геометрической сумме всех внешних сил, действующих на систему.

    Кинематика вращательного движения материальной точки.

Угловая скорость – векторная величина, равная первой производной угла поворота тела по времени.

Вектор направлен вдоль оси вращения по правилу правого винта.

Линейная скорость точки:

В векторном виде: , при этом модуль равен:.

Если =const, то вращение равномерное.

Период вращения (Т) – время, за которое точка совершает один полный оборот. ().

Частота вращения ( n ) – число полных оборотов, совершаемых телом при равномерном его движении по окружности, в единицу времени. ;.

Угловое ускорение – векторная величина, равная первой производной угловой скорости по времени: . При ускоренном, при замедленном.

Тангенциальная составляющая ускорения:

Нормальная составляющая: .

Формулы связи линейных и угловых величин:

При :

    Момент силы.

Момент силы F относительно неподвижной точки О называется физическая величина, определяемая векторным произведением радиуса-вектора r , проведённого из точки О в точку А приложения силы, на силу F.

Здесь - псевдовектор, его направление совпадает с направлением поступательного движения правого винта при его вращении отк.

Модуль момента силы равен .

Момент силы относительно неподвижной оси z – скалярная величина , равная проекции на эту ось векторамомента силы, определённого относительно произвольной точки О данной осиz. Значение момента не зависит от выбора положения точки О на данной оси.

    Момент инерции твёрдого тела. Теорема Штейнера.

Момент инерции системы (тела) относительно оси вращения называется физическая величина, равная сумме произведений масс n мт системы на квадрат их расстояний до рассматриваемой оси.

При непрерывном распределении масс.

Теорема Штейнера: момент инерции тела J относительно любой оси вращения равен моменту его инерции J C относительно параллельной оси, проходящеё через центр масс С тела, сложенному с произведением массы m тела на квадрат расстояния а между осями:

    Основное уравнение динамики вращательного движения.

Пусть сила F приложена к точке В. Находящейся от оси вращения на расстоянии r, -угол между направлением силы и радиус-векторомr. При повороте тела на бесконечно малый угол , точка приложения В проходит путь, и работа равна произведению проекции силы на направление смещения на величину смещения:

Учитывая, что , запишем:

Где -момент силы, относительно оси.

Работа при вращении тела равна произведению момента действующей силы на угол поворота.

Работа при вращении тела идёт на увеличение его кинетической энергии:

Но ,, поэтому

Учитывая, что получим:

Этот и есть относительно неподвижной оси.

Если ось вращения совпадает с главной осью инерции, проходящей через центр масс, то: .

    Момент импульса. Закон сохранения момента импульса.

Момент импульса (количество движения) мт А относительно неподвижной точки О – физическая величина, определяемая векторным произведением:

где r-радиус-вектор, проведённый из точки О в точку А; - импульс мт.-псевдовектор, его направление совпадает с направлением поступательного движения правого винта при его вращении отк.

Модуль вектора момента импульса:

Момент импульса относительно неподвижной оси z называется скалярная величина L z , равная проекции на эту ось вектора момента импульса, определённого относительно произвольной точки О данной оси.

Т.к. , то момент импульса отдельной частицы:

Момент импульса твёрдого тела относительно оси есть сумма моментов импульса отдельных частиц, а т.к. , то:

Т.о. момент импульса твёрдого тела относительно оси равен произведению момента инерции тела относительно той же оси на угловую скорость.

Продифференцируем последнее уравнение: , т.е.:

это и есть уравнение динамики вращательного движения твёрдого тела относительно неподвижной оси: Производная момента импульса твёрдого тела относительно оси равна моменту сил относительно той же оси.

Можно показать, что имеет место векторное равенство:

В замкнутой системе момент внешних сил и, откуда:L=const, это выражение и есть закон сохранения момента импульса: момент импульса замкнутой системы сохраняется, т.е. не изменяется с течением времени.

    Работа силы. Мощность.

Энергия – универсальная мера различных форм движения и взаимодействия.

Работа силы – величина, характеризующая процесс обмена энергией между взаимодействующими телами в механике.

Если тело движется прямолинейно и на него действует постоянная сила , которая составляет некоторый уголс направлением перемещения, торабота этой силы равна произведению проекции силы F s на направление перемещения, умноженной на перемещение точки приложения силы:

Элементарная работа силы на перемещенииназывается скалярная величина, равная:, где,,.

Работа силы на участке траектории от 1 до 2 равна алгебраической сумме элементарных работ на отдельных бесконечно малых участках пути:

Если на графике изображена зависимость F s от S, то работа определяется на графике площадью закрашенной фигуры.

При , то А>0

При , то А<0,

При , то А=0.

Мощность – скорость совершения работы.

Т.е. мощность равна скалярному произведению вектору силы на вектор скорости, с которой движется точка приложения силы.

    Кинетическая и потенциальная энергия поступательного и вращательного движения.

Кинетическая энергия механической системы – энергия механического движения этой системы. dA=dT. По 2зН , помножим наи получим:;

Отсюда:.

Кинетическая энергия системы – есть функция состояния её движения, она всегда , и зависит от выбора системы отсчёта.

Потенциальная энергия – механическая энергия системы тел, определяемая их взаимным расположением и характером сил взаимодействия между ними.

Если силовое поле характеризуется тем, что работа совершаемая действующими силами при перемещении тела из одного положения в другое, не зависит от того, по какой траектории, по которой это перемещение произошло, а зависит только от начального и конечного положений, то такое поле называется потенциальным, а силы, действующие в нём – консервативными, если же работа зависит от траектории то такая сила – диссипативная .

Т.к. работа совершается за счёт убыли потенциальной энергии, то: ;;, где С – постоянная интегрирования, т.е. энергия определяется с точностью до некоторой произвольной постоянной.

Если силы консервативны, то:

- Градиент скаляра П. (также обозначается ).

Т.к. начало отсчёта выбирается произвольно, то потенциальная энергия может иметь отрицательное значение. (при П=-mgh’).

Найдём потенциальную энергию пружины.

Сила упругости: , по 3зН:F x =-F x упр =kx;

dA=F x dx=kxdx;.

Потенциальная энергия системы является функцией состояния системы, она зависит только от конфигурации системы и от её положения по отношению к внешним телам.

Кинетическая энергия вращения

    Механическая энергия. Закон сохранения механической энергии.

Полная механическая энергия системы – энергия механического движения и взаимодействия: Е=Т+П, т.е. равна сумме кинетической и потенциальной энергий.

Пусть F 1 ’…F n ’ – равнодействующие внутренних консервативных сил. F 1 …F n - равнодействующие внешних консервативных сил. f 1 …f n . Запишем уравнения 2зН для этих точек:

Умножим каждое ур-е на , учтя, что.

Сложим ур-я:

Первый член левой части:

Где dT есть приращение кинетической энергии системы.

Второй член равен элементарной работе внутренних и внешних сил, взятой со знаком минус, т.е. равен элементарному приращению потенциальной энергииdП системы.

Правая часть равенства задаёт работу вешних неконсервативных сил, действующих на систему. Т.о.:

Если внешние неконсервативные силы отсутствуют, то:

d(Т+П)=0;Т+П=Е=const

Т.е. полная механическая энергия системы сохраняется постоянной. Закон сохранения механической энергии : в системе тел, между которыми действуют только консервативные силы, полная механическая энергия сохраняется, т.е. не изменяется со временем.

    Абсолютно упругий удар.

Удар (соударение)

Коэффициент восстановления

абсолютно неупругими , если =1 тоабсолютно упругими.

Линия удара

Центральный удар

Абсолютно упругий удар – столкновение 2-х тел, в результате которого в обоих взаимодействующих не остаётся ни каких деформаций и вся кинетическая энергия, которой обладали тела до удара, после удара снова превращается в кинетическую энергию.

Для абсолютно упругого удара выполняются закон сохранения импульса и закон сохранения энергии.

Законы сохранения:

m 1 v 1 +m 2 v 2 =m 1 v’ 1 +m 2 v’ 2

после преобразований:

откуда:v 1 +v 1 ’=v 2 +v 2 ’

решая последнее ур-е и предпедпоследнее найдём:

    Абсолютно неупругий удар.

Удар (соударение) – столкновение 2-х или более тел, при котором взаимодействие длится очень короткое время. При ударе внешними силами можно пренебречь.

Коэффициент восстановления – отношение нормальной составляющей относительной скорости тел после и до удара.

Если для сталкивающих тел =0, то такие тела называютсяабсолютно неупругими , если =1 тоабсолютно упругими.

Линия удара – прямая проходящая через точку соприкосновения тел и нормальная к поверхности их соприкосновения.

Центральный удар – такой удар, при котором тела до удара движутся вдоль прямой, проходящей через их центр масс.

Абсолютно неупругий удар – столкновении 2-х тел, в результате которого тела объединяются, двигаясь дальше, как единое целое.

Закон сохранения импульса:

Если шары двигались навстречу друг другу, то при абсолютно неупругом ударе шары движутся в сторону большего импульса.

    Поле тяготения, напряжённость, потенциал.

Закон всемирного тяготения: между любыми двумя мт действует сила взаимного притяжения, прямо пропорциональная произведению масс этих точек и обратно пропорциональная квадрату расстояния между ними:

G – Гравитационная постоянная (G=6,67*10 -11 Hm 2 /(кг) 2)

Гравитационное взаимодействие между двумя телами осуществляется с помощью поля тяготения , или гравитационного поля. Это поле порождается телами и является формой существования материи. Основное св-во поля в том, что на всякое тело внесённое в это поле действует сила тяготения:

Вектор не завит от массы и называется напряжённостью поля тяготения.

Напряжённость поля тяготения определяется силой действующей со стороны поля на мт единичной массы, и совпадает по направлению с действующей силой, напряжённость есть силовая хар-ка поля тяготения.

Поле тяготения однородное если напряжённость во всех точках его одинакова, и центральным , если во всех точках поля векторы напряжённости направлены вдоль прямых, которые пересекаются в одной точке.

Гравитационное поле тяготения – носитель энергии.

На расстоянии R на тело действует сила:

при перемещении этого тела на расстояние dR затрачивается работа:

Знак минус появляется, т.к. сила и перемещение в данном случае противоположны по направлению.

Затраченная работа в пол тяготения не зависит от траектории перемещения, т.е. илы тяготения консервативны, а поле тяготения является потенциальным.

Если то П 2 =0, тогда запишем:,

Потенциал поля тяготения – скалярная величина, определяемая потенциальной энергией тела единичной массы в данной точке поля или работой по перемещению единичной массы из данной точки поля в бесконечность. Т.о.:

Эквипотенциальные – такие поверхности, для которых потенциал постоянен.

Взаимосвязь между потенциалом и напряженностью.

Знак мину указывает на то, что вектор напряжённости направлен в сторону убывания потенциала.

Если тело находится на высоте h, то

    Неинерциальная система отсчёта. Силы инерции при ускоренном поступательном движении системы отсчёта.

Неинерциальная – система отсчёта, движущаяся относительно инерциальной системы отсчёта с ускорением.

Законы Н можно применять в неинерциальной системе отсчёта, если учесть силы инерции. Силы инерции при этом должны быть такими, чтобы вместе с силами, обусловленными воздействием тел друг на друга, они сообщали телу ускорение, каким оно обладает в неинерциальных системах отсчёта, т.е.:

Силы инерции при ускоренном поступательном движении системы отсчёта.

Т.е. угол отклонения нити от вертикали равен:

Относительно системы отсчёта, связанной с тележкой шарик покоится, что возможно, если сила F уравновешивается равной и противоположно направленной ей силой F ин, т.е.:

    Силы инерции, действующие на тело, покоящееся во вращающейся системе отсчёта.

Пусть диск равномерно вращается с угловой скоростью вокруг вертикальной оси, проходящей через его центр. На диске на разных расстояниях от оси вращения установлены маятники (на нитях подвешены шарики). При вращении маятников вместе с диском шарики отклоняются от вертикали на некоторый угол.

В инерциальной системе отсчёта, связанной с помещением, на шарик действует сила, равная , и направлена перпендикулярно оси вращения диска. Она является равнодействующей силы тяжестии силы натяжения нити:

Когда движение шарика установится, то:

т.е. углы отклонения нитей маятников будут тем больше, чем больше расстояние R от шарика до оси вращения диска и чем больше угловая скорость вращения .

Относительно системы отсчёта, связанной с вращающимся диском, шарик покоится, что возможно, если сила уравновешивается равной и противоположно направленной ей силой.

Сила , называемаяцентробежной силой инерции , направлена по горизонтали от оси вращения диска и равна:.

    Гидростатическое давление, закон Архимеда, закон неразрывности струи.

Гидроаэромеханика – раздел механики, изучающий равновесие и движение жидкостей и газов, их взаимодействие между собой и обтекаемыми ими твёрдыми телами.

Несжимаемая жидкость – жидкость, плотность которой всюду одинакова и не изменяется со временем.

Давление – физическая величина, определяемая нормальной силой, действующей о стороны жидкости на единицу площади:

Закон Паскаля – давление в любом месте покоящейся жидкости одинаково по всем направлениям, причём давление одинаково передаётся по всему объёму, занятому покоящейся жидкости.

Если жидкость не сжимаема, то при поперечном сечении S столба жидкости, его высоте h и плотности вес:

А давление на нижнее основание:,т.е. давление изменяется линейно с высотой. Давлениеназываетсягидростатическим давлением .

Из этого следует, что давление на нижние слои жидкости будет больше, чем на верхние, значит на тело, погружённое в жидкость действует выталкивающая сила, определяемая законом Архимеда: на тело погружённое в жидкость (газ), действует со стороны этой жидкости направленная вверх выталкивающая сила, равная весу вытесненной телом жидкости:,

Течение – движение жидкости.Поток – совокупность частиц движущейся жидкости.Линии тока – графическое изображение движения жидкости.

Течение жидкости установившееся (стационарно) , если форма расположения линий тока, а так же значения скоростей в каждой её точке со временем не изменяются.

За 1с через сечение S 1 пройдёт объём жидкости равный , а черезS 2 - , здесь предполагается, что скорость жидкости в сечении постоянна. Если жидкость не сжимаема, то через оба сечения пройдёт равный объём:

Это и есть уравнение неразрывности струи для несжимаемой жидкости.

    Закон Бернулли.

Жидкость идеальна, движение стационарно.

За малый промежуток времени жидкость перемещается от сеченийS 1 и S 2 к сечениям S’ 1 и S’ 2 .

По закону сохранения энергии изменение полной энергии идеальной несжимаемой жидкости равно работе внешних сил по перемещению массы жидкости:,

где Е 1 и Е 2 – полные энергии жидкости массой m в местах сечений S 1 и S 2 соответственно.

С другой стороны А – это работа, совершаемая при перемещении всей жидкости, заключённой между сечениями S 1 и S 2 , за рассматриваемый промежуток времени . Для переноса массыm от S 1 до S’ 1 жидкость должна переместится на расстояние и отS 2 до S’ 2 на расстояние .,гдеF 1 =p 1 S 1 и F 2 =-p 2 S 2 .

Первый закон Ньютона : существуют системы отсчета, в которых любое изолированное не подвергающееся действию внешних сил тело сохраняет свое состояние покоя или равномерного прямолинейного движения. Такие системы отсчета называются инерциальными.
Первый закон Ньютона часто называют законом инерции, поскольку движение, не поддерживаемое никаким воздействием, - это движение по инерции. При формулировке закона инерции И. Ньютон опирался на труды Г. Галилея, который первым понял ошибочность утверждения, что тело, на которое ничто не действует, может только покоиться. Галилей показал, что такое тело может либо покоиться, либо двигаться с постоянной скоростью.
Второй закон Ньютона: под действием силы F тело массой т приобретает такое ускорение а, что произведение массы на ускорение будет равно действующей силе, т. е.

Второй закон Ньютона показывает, что причиной изменения скорости тела является действие на него окружающих тел.

Формула второго закона ньютона:

где Ар - изменение импульса тела за время At, вызванное действием силы F. Формула (1) справедлива лишь в том случае, когда масса тела т не изменяется, в то время как (2) верна всегда. Видно, что при т = const формула (2) обращается в формулу (1):

Учитывая принцип суперпозиции сил (равнодействующая нескольких сил равна их векторной сумме), второй закон Ньютона можно записать в виде:
ma = F1 + ... + Fn.

Третий закон Ньютона : при взаимодействии двух тел силы, с которыми они действуют друг на друга, равны по модулю и противоположны, по направлению, т. е.
F12 = - F21
Силы, о которых идет речь в третьем законе Ньютона, приложены к разным телам, но всегда имеют одну природу.
Примерами таких пар сил могут служить: силы гравитационного взаимодействия двух тел; вес тела и сила реакции опоры; кулоновские силы и др.
Являясь основой классической механики, законы Ньютона описывают взаимодействия макроскопических тел, участвующих в нерелятивистских движениях (их скорости много меньше скорости света). При этом тела рассматриваются как материальные точки, а движение описывается относительно инерциальных систем отсчета.

Три закона Ньютона лежат в основе классической механики и позволяют вывести уравнения движения. С момента формулировки законов Ньютона пошел отчет в истории не только

Иссак Ньютон

(25.12.1642 - 20.03.1727)

Английский физик, математик и астроном, один из создателей классической физики. Автор фундаментального труда «Математические начала натуральной философии»

современной физики, но и естественных наук.


Первый закон Ньютона часто еще называется инерциальным законом. Он утверждает, что существуют такие системы отсчета, в которых любое тело, что не подверглось воздействию внешних сил, сохраняет состояние покоя или прямолинейного равномерного движения.

mx a = F

Закон говорит, что в этой же системе любые другие свободные тела должны вести себя абсолютно одинаково. Состояние покоя или равномерного движения являются вполне равноправными и не требуют объяснения. Любая система, которая находится в поступательном движении, прямолинейно и равномерно по отношению к инерциальной также является инерциальной.


Второй закон Ньютона говорит, что причиной изменения скорости тел, которые находятся в состоянии равномерного движения, может изменить свою скорость только при воздействии посторонних тел. Закон утверждает, что точка (тело) в инерциальных системах приобретает ускорение прямопропорционально силе, которая на него действует и обратнопропорциональна массе точки (тела).

Данная формула справедлива при неизменяемой массе тела. В обратном случае используется формула.

В третьем законе Ньютона говорится о том, что тела действуют друг на друга с силами одинаковыми за модулем и различными по направлению. В нем утверждается, что любые влияния тел друг на друга являются взаимными. Если тело (F 12) действует на другое тело (F 21) с определенной силой, то и другое тело тоже действует на первое. F 12 = F 21 .

Открытие данных законов стало поворотным моментом в истории физики. В совокупности законы дают физикам возможность наблюдения за всеми процессами, которые происходят во

«Я смотрю на себя, как на ребенка, который, играя на морском берегу, нашел несколько камешков поглаже и раковин попестрее, чем удавалось другим, в то время как неизмеримый океан истины расстилался перед моим взором неисследованным».

Исаак Ньютон

всей вселенной благодаря возможности поднимать в атмосферу ракеты, космические корабли и конструировать машины.

Данные законы были сформулированы Исааком Ньютоном в 1687. История их открытия известна всем. Согласно легенде, Ньютон сидел в своем саду и обратил внимание на падающее с дерева яблоко. В результате у него возникла мысль, что если сила тяготения действует на дерево, то она может действовать и повсюду. Впервые же мысль о тяготении пришла в голову студенту того же Ньютона, но она не распространилась в результате неправильных расчетов.