Домой / Глаза / Производители искусственных бриллиантов. Ценные свойства алмаза

Производители искусственных бриллиантов. Ценные свойства алмаза

С неожиданным явлением столкнулись ученые Всесоюзного научно-исследовательского института синтеза минерального сырья. Обычным методом высоких температур и давлений они выращивали искусственные алмазы . На этот раз целью опытов было выяснить, как влияет на свойства алмаза сверхнормативный азот, и для того чтобы ввести в будущие кристаллы побольше азота, в смесь металлов - растворителей углерода добавляли от 5 до 20% нитрида марганца Mn 4 N.

Полученные кристаллы действительно содержали больше азота, чем обычно (на два - три порядка!). Это были настоящие искусственные алмазы , правда, монокристаллов идеальной формы, с кубической решеткой, среди них было очень мало. Зато почти 20% всех алмазов оказались двойниковыми сростками, а не монокристаллами. Наблюдались и некоторые аномалии физических характеристик, в частности слабая анизотропия (неоднородность) оптических свойств.

Большинство «отклонений от нормы» объясняются напряжениями, возникшими в кристаллической решетке из-за добавки азота. Но как объяснить необычную окраску большинства кристаллов? Исследователи получили не желтые, как обычно, а густозеленые прозрачные искусственные алмазы.

Применение искусственных алмазов

Алмазные стеклорезы

Использование алмаза для резки стекла - наиболее древний способ практического применения этого минерала. Самым распространенным инструментом для этой цели является алмазный стеклорез, который состоит из ограненного в форме правильной четырехгранной пирамиды кристалла алмаза, закрепленного в металлическом держателе, и латунного молоточка с деревянной ручкой. Для изготовления стеклорезов применяются алмазы весом 0,02-0,20 карата плотного строения без дефектов.
В зависимости от толщины стекла используются различные стеклорезы. Например, для резки стекла толщиной до 5 мм применяются стеклорезы, где вес кристалла составляет от 0,02 до 0,12 карата, а толщиной до 10 мм - от 0,12 до 0,20 карата.
Производительность алмазного стеклореза очень высокая. Алмазом весом 0,1 карата, например, можно нарезать 100 000 погонных м стекла. Твердосплавные стеклорезы такой производительности не дают.

Зубоврачебный инструмент

Помимо перечисленных методов технического применения алмаз используется и в медицине главным образом, при лечении зубов.
Зубная эмаль по твердости близка к кварцу. Поэтому для ее обработки необходимы очень твердые материалы. Применяемые инструменты с карбидом кремния обладают недостаточной твердостью; кроме того, они вызывают боль. Применение алмазного инструмента устраняет эти недостатки.
Создается возможность значительного увеличения числа оборотов бормашин для обработки зуба при малой силе давления на него. Болевые ощущения при использовании алмазного инструмента сводятся до минимума.
Мы коротко рассказали о важнейших областях применения алмазов в технике. Однако этим не исчерпываются все области его использования. Алмаз применяется и для многих других целей, и эта сфера его использования увеличивается с каждым годом.
Применение алмаза в технике позволяет резко повысить производительность труда и снизить себестоимость продукции, облегчить процессы автоматизации производства, получить детали исключительной точности и чистоты отделки, а также сэкономить огромные средства.
Наконец-то человек нашел для алмаза настоящее место в жизни, заставил его работать на себя. И для нас сейчас алмаз в рабочей спецовке гораздо ценнее, чем алмаз в сверкающей короне.

Алмазное волочение

Процесс волочения - это способ обработки металлов давлением, состоящий в протягивании катаных, реже кованых изделий круглого или фасонного профиля через отверстие, сечение которого меньше сечения исходного изделия. В результате волочения поперечные размеры изделия уменьшаются, а длина увеличивается. Этот процесс особенно широко применяется для изготовления тонкой проволоки из цветных металлов. Рассматриваемый способ обработки металла был известен еще 3-3,5 тыс. лет до нашей эры. В те далекие времена волочение применялось для изготовления золотой и серебряной проволоки для украшений. Такая проволока называлась канителью. Отсюда в наш обиход прочно вошло выражение «тянуть канитель», т. е. медленно, однообразно делать какое-либо дело.
Такое выражение объяснилось технологией изготовления проволоки в древние времена. Тогда все оборудование состояло из волочильной доски, закрепленной между двумя столбами, и клещей, которые привязывались к поясу рабочего, сидящего в качающейся люльке. Рабочий подтягивался к волоке, захватывал пропущенный через нее конец проволоки клещами, упирался согнутыми ногами в столбы и, распрямляя их, протягивал проволоку. Он качался до тех пор, пока не вытягивал проволоку нужного диаметра и размера.
Для того чтобы вытягивать проволоку нужного диаметра, волоки должны быть изготовлены из очень прочного материала, трудно поддающегося деформации. Волоки делали из твердых сплавов, которые не могли долго выдерживать напряжение и быстро выходили из строя.
С внедрением алмазов в технику для волочения тонкой проволоки стали применяться алмазные волоки (фильеры). Через такие фильеры стало возможным протягивать проволоку точного диаметра - от 0,001 до 2 мм.
Применение алмазных волок обеспечивает высокое качество поверхности и точность диаметра протягиваемой проволоки, так как алмаз трудно поддается истиранию. При алмазном волочении можно получить тонкую проволоку диаметром 9-10 микрон. Стойкость алмазных волок выше стойкости твердосплавных в 100-300 раз в зависимости от диаметра волоки. При волочении медной проволоки стойкость алмазных волок, выраженная в километрах протянутой проволоки, составляет 25-30 тыс. км, тогда как стойкость твердо-сплавных лишь 100 км. Через одну алмазную фильеру можно протянуть проволоку такой длины, которой можно опоясать земной шар по экватору несколько раз.
Алмазная волока представляет собой ограненный по трем плоскостям кристалл алмаза, закрепленный в металлической оправе, с просверленным в центре и отшлифованным каналом.
Вес алмаза для волок выбирается в зависимости от диаметра их отверстий. ГОСТ 6271-60 устанавливает вес кристаллов для волок.
Волочение проволоки на отечественных заводах осуществляется на машинах однократного и многократного волочения. В первых - проволока протягивается через одну фильеру, а во вторых - через несколько последовательно расположенных волок. Наибольшее распространение имеют машины многократного волочения, отличающиеся высокой производительностью.

Алмазные наконечники

Современный уровень машиностроения характерен применением большого разнообразия высокопрочных и износостойких материалов. Важным их качеством является твердость. Поэтому в промышленности, связанной с обработкой металлов и минералов, наиболее широко применяются испытания на твердость.
Для определения твердости металлов и минералов применяется несколько методов. По методам Бринелля и Роквелла испытание проводится путем вдавливания стального шарика в испытываемый материал; по методу Виккерса для этой цели используют кристалл алмаза в форме пирамиды; по методу Мооса твердость определяют путем царапания минерала, металлов и минералов определяется их сопротивление деформации при вдавливании шарика или пирамидки. При этом происходит определенная деформация не только в испытываемом материале, но и в том, которым испытывают. Алмаз не подвергается деформации и поэтому он отвечает требованиям, предъявляемым при конструкции приборов для определения твердости минералов и металлов.

Минералы и полезные ископаемые имеют свойство заканчиваться в недрах земли. Но у людей есть потребность в использовании различных минералов, в том числе и алмазов. Поэтому с развитием технологий начинается разработка и переход на искусственную добычу камней. Искусственные алмазы практически ничем не отличаются на сегодняшний день от натуральных минералов. По виду камни сложно отличить даже геммологам, что свидетельствует о высоком уровне сходства.

Искусственный алмаз

Ценные свойства алмаза

Конечно, даже развитие аппаратуры и технологий еще не стало причиной полного перехода от природных камней на синтетические алмазы. Пока компании по в лабораториях руководствуются принципом «два из трех»:

  • качество;
  • размер;
  • рентабельность.

Два из трех критериев выбирается в процессе, но пока предел или идеал не достигнут, ученым есть к чему стремиться.

Большинство людей видят в магазинах алмазы уже в обработанном виде в качестве бриллиантов. Камни оправляются в драгметаллы и выступают в роли дорогостоящих украшений.

По химическому составу бриллиант является углеродом с особым строением кристаллической решетки. Происхождение минералов точно не известно. Существует даже теория космического происхождения алмазов. Наверное, поэтому сложно полностью повторить или воссоздать картину образования камня в лаборатории.

Первые попытки синтезировать камень начались после исследования структуры алмаза - она очень плотная, кристаллическая решетка состоит из атомов, соединенных ковалентными сигма-связами. Разрушить эти соединения легче, чем их сформировать.

Несмотря на то что бриллиант является украшением номер один, камень используется во многих сферах, помимо ювелирного дела. Именно этот фактор и натолкнул ученых на синтез искусственных камней. А еще алмаз имеет уникальные характеристики с точки зрения химии и физики:

  • Самая высокая твердость (10 из 10 по шкале Мооса). Даже состав сплава стали не настолько твердый, как алмаз.
  • Температура плавления вещества 800-1000 градусов Цельсия с доступом кислорода и до 4000 градусов Цельсия без доступа кислорода, с дальнейшим превращением алмаза в графит.
  • Алмаз используется в качестве диэлектрика.
  • У минерала самая высокая теплопроводность.
  • Камень обладает люминесценцией.
  • Минерал не растворяется в кислоте.

Выход на рынок синтетических алмазов может случиться в один момент и стать неожиданностью. Алмазная индустрия претерпит изменения, уменьшатся объемы продаж. Из камня начнут изготавливать полупроводники. Из-за высокой температуры плавления, полупроводники из алмаза можно разогревать до больших показателей, чем кремний. При температурах около 1000 градусов Цельсия кремний в микросхемах начинает плавиться и отключается, а алмаз продолжает работать.

Искусственный алмаз - действительно полезная вещь в науке и производстве. Среди ученых, которые занимаются синтезом алмазов для промышленности распространена такая поговорка: «Если ничего нельзя сделать из алмаза, сделайте из него бриллиант».

Методики создания вещества

Первые попытки получить алмаз искусственный начались еще в конце XVIII века, когда стало известно о составе камня, но технологии не позволяли воссоздать нужную температуру и давление для образования минерала. Только в пятидесятых годах XX века попытки синтеза вещества увенчались успехом. Среди стран, выращивающих алмазы, были США, ЮАР, Россия.

Оборудование для создания искусственных алмазов

Первые синтетические алмазы были далеки от идеала, но сегодня камни практически неотличимы от природных алмазов. Процесс выращивания является трудоемким и материально затратным. Существует несколько вариантов и форм синтеза алмаза:

  • Способ получения HPHT-алмазов. Эта методика близка к природным условиям. При ней необходимо соблюдать температуру 1400 градусов Цельсия и давление в 55000 атмосфер. В производстве используются затравочные алмазы, которые кладут на пласт из графита. Размер затравочных камней до 0,5 миллиметров в диаметре. Все компоненты размещают в специальном устройстве, напоминающем автоклав в определенном порядке. Сначала располагается основа с затравкой, потом идет сплав металла, который является катализатором, затем прессованный графит. Под воздействием температур и давления ковалентные пи-связи графита преобразуются в сигма-связи алмаза. Металл в процессе плавится, и графит оседает на затравку. Синтез продолжается от 4 до 10 дней, все зависит от требуемых размеров камня. Весь потенциал методики не раскрыт, и не все ученые доверяли этой технологии, пока не увидели созданные крупные кристаллы ювелирного качества. Огранка у полученных камней одинаковая.
  • Синтез CVD-алмазов. Аббревиатура расшифровывается, как «осаждение из пара». Второе название процедуры - пленочный синтез. Технология более старая и проверенная, чем HPHT-производство. Именно она создает промышленные алмазы, которые можно использовать даже для лезвий в микрохирургии. По технологии также нужна подложка, на которую помещается алмазная затравка и все это располагается в специальных камерах. В таких камерах создаются вакуумные условия, после чего пространство заполняется газами водорода и метана. Газы разогреваются с помощью СВЧ-лучей до температуры 3000 градусов Цельсия, и углерод, который был в метане, оседает на основу, которая остается холодной. Синтетический алмаз, созданный по этой технологии, получается более чистым, без примесей азота. Эта методика напугала большинство концернов, добывающих камень в природе, поскольку она способна дать чистый и большой кристалл. Такой камень практически не будет иметь металлических примесей и его сложнее будет отличить от натурального. Алмазы, полученные по этой технологии, можно будет использовать в компьютерах в качестве полупроводника вместо кремниевых пластин. Но для этого необходимо усовершенствовать методику выращивания, поскольку пока размеры получаемых алмазов ограничены. Сегодня параметры пластин доходят до отметки 1 сантиметр, но через 5 лет планируется достижение планки в 10 сантиметров. А стоимость карата такого вещества не будет превышать 5 долларов.
  • Способ взрывного синтеза - одна из последних задумок ученых, позволяющих получить искусственный алмаз. Методика дает возможность получить искусственный камень за счет детонации взрывчатых веществ и последующего охлаждения после взрыва. Кристаллы в результате получаются мелкие, но способ приближен к естественному образованию минералов.

А еще недавно возникло направление, позволяющее создавать мемориальные алмазы. Эта тенденция позволяет увековечить память о человеке в камне. Для этого тело после смерти поддается кремации, а из праха изготавливается графит. Далее графит используется в одном из способов синтеза алмазов. Так, камень содержит в себе останки тела человека.

Поскольку все способы дорогостоящие, нередко в ювелирном деле используют не искусственные вещества, а подделки или другие разновидности камня. Стекляшка среди алмазов - самая дешевая и устаревшая практика. На сегодняшний день она неудачная, поскольку распознать подлинник от подделки можно легко - достаточно царапнуть камень или посмотреть на игру света. Чаще всего в качестве бриллиантов продают фианиты.

Перспектива развития синтеза алмаза

Будущее синтетического алмаза начинается именно сегодня. Искусственный минерал стал символом времени, и вскоре у людей появится доступ к недорогим и красивым изделиям. Но пока технологии находятся на стадии развития и совершенствования. Например, лаборатория в Москве способна выращивать по вышеперечисленным технологиям до 1 килограмма алмазов в год. Конечно, этого мало для обеспечения потребностей промышленности. Дальнейшие обработки добываемых камней также требуют времени и оборудования.

Поэтому пока ведется традиционными способами, и никто не отказывается от разработки новых месторождений, открытия кимберлитовых трубок. Как только появилось производство искусственных алмазов, компания De Beers - практически монополия на рынке алмазов - начала переживать о своем бизнесе. Годовой оборот концерна составляет до 7 миллиардов долларов в год. Но пока синтетические камни не являются конкурентами натуральным алмазам, а их доля на рынке достигает всего 10%.

А еще, вместе с синтезом, развивалась и геммология, которая позволяет рассказать о происхождении камня. Синтетические алмазы можно легко отличить от натуральных. В качестве признаков выделяют:

  • включения металлов в камнях из лаборатории;
  • секторы роста, которые определяются в цветных алмазах;
  • разный характер люминесценции алмазов.

Технологии и знания ученых совершенствуются с каждым днем. Процесс запущен, над ним работают специалисты. В скором времени мир увидит результаты и, возможно, даже откажется от традиционной добычи алмазов из недр земли.

Бояться пришествия искусственных алмазов стоит не группе De Beers, а компании Intel

Метод Gemesis Высокое давление, высокие температуры. Кристалл вырастает в камере, имитирующей условия земной коры.

Метод Apollo Химическое осаждение паров. Кристалл получается, когда из облака плазмы идет дождь, который попадает на алмазную подложку.

Искусственные микроалмазы для промышленного применения.

Современная сенсация — синтетические ювелирные алмазы

Аарон Вейнгаартен смотрит на желтый алмаз сквозь ювелирную лупу. Мы в Антверпене, в гостиной Вейнгаартена, полной мрамора и позолоты, на самом краю района ювелиров, в самом центре алмазной вселенной. Почти 80% всех алмазов и бриллиантов в мире проходят через руки бельгийских торговцев камнями вроде Вейнгаартена, который носит окладистую бороду и черный костюм ортодоксального еврея. «Камень очень редкий, — бормочет себе под нос ювелир, — желтые алмазы такого оттенка найти очень непросто. Этот стоит 10, может, 15 тысяч долларов». Я сообщаю ему, что в кармане у меня два точно таких же. Он кладет камень на стол и в первый раз смотрит на меня серьезно. Я выкладываю еще два камня. Все они одного цвета и размера. Вероятность найти три одинаковых желтых алмаза примерно такая же, как бросить монету 10 тысяч раз и ни разу не увидеть орла. «Это что, кубическая окись циркония (в России этот камень больше известен под названием «фианит»)?» — не особенно надеясь на положительный ответ, спрашивает Вейнгаартен. Я отвечаю, что все алмазы — настоящие, их изготовила машина, находящаяся во Флориде. Общая стоимость производства не превысила сотни долларов. Ювелир ерзает на стуле, неотрывно следя за камнями, которые лежат на столе в его гостиной. «Если их нельзя отличить, индустрии придет конец», — резюмирует он.

При температуре 1200оС под давлением примерно 50 тыс. атмосфер углерод кристаллизуется в самый твердый из известных материалов. Именно так сформировались алмазы глубоко в земной коре 3,3 млрд. лет назад. Воссоздать такие условия в лаборатории непросто, но попыток предпринималось немало. Начиная с середины XIX века десятки «алхимиков» пострадали в результате несчастных случаев, происшедших при попытках изготовить алмазы. Последние десятилетия принесли успех, пускай скромный. Начиная с 1950-х инженеры научились вырабатывать мелкие кристаллы для промышленного применения — покрытия пил, буровых коронок и шлифовальных кругов. Но летом 2003 года на рынок попала первая волна искусственных алмазов ювелирного качества. Делать их научились две компании — Gemesis во Флориде и Apollo Diamond в Бостоне.

Неожиданный выход на рынок искусственных камней грозит необратимо трансформировать алмазную индустрию, ежегодный оборот которой оценивается в $7 млрд. Но важнее другое — массовое производство алмазов открывает двери разработке алмазных полупроводников. Оказывается, алмаз — не только самый твердый камень на земле, он также обладает самой высокой теплопроводностью. Сегодняшние полупроводники греются примерно до 100оС, а при дальнейшем нагревании просто перестают работать. Алмазные микросхемы, напротив, можно греть до температур, когда обычный кремний уже давно бы расплавился.

Бригадный генерал

Международный концерн De Beers уже 115 лет как монополизировал алмазный бизнес, уничтожая конкурентов путем регулирования предложения алмазов на рынке. За свою долгую историю De Beers пережила многочисленные африканские восстания, боролась с американским антимонопольным законодательством, уклонялась от обвинений в эксплуатации несчастных рабочих третьего мира. Не сломило ее монополию и открытие многочисленных алмазных месторождений в Австралии, Канаде и Сибири. У компании громадный рекламный бюджет и полный Контроль над каналами распространения камней. Но чего у De Beers нет — так это отставного бригадного генерала Картера Кларка.

Картеру Кларку 75 лет. Он ушел в отставку более 30 лет назад, но командных навыков так и не утратил. Когда генерал появляется в офисе компании Gemesis, которую он основал в 1996 году с целью наладить массовое производство алмазов, сотрудники встают в приветствии. Иначе нельзя. Особенно учитывая, что «Генерал», как его тут прозвали, постоянно отдает своим подчиненным честь, как будто они — его армия, которая идет в бой. «Я был в Корее и Вьетнаме», — сообщает Генерал, отдав мне честь в приемной. — Так что уж поверьте, справлюсь и с алмазным бизнесом". Кларк показывает мне свою новую фабрику, расположенную в промышленной зоне недалеко от города Сарасота (Флорида). В здании планируется разместить машины для производства алмазов, которые похожи на медицинские приборы поддержания жизни. В строю 27 таких машин. Компания Gemesis надеется вводить в строй по 8 штук ежемесячно. В этом ангаре их число должно достичь 250-ти. Другими словами, Gemesis готовит первый удар по алмазному бизнесу.

Кларк не собирался становиться алмазным королем. Идея пришла случайно, во время его поездки в Москву в 1995 году. Его тогдашняя компания — Security Tag Systems — была одной из первых, кто привез в Россию метки, мешавшие воровать вещи из магазинов. Так он познакомился с Юрием Семеновым, который руководил одним из научно-технических бюро, по государственной программе занимавшихся продажей военных технологий советских времен западным инвесторам. Но у Семенова была идея получше — он предложил Генералу выращивать алмазы. Через несколько часов у Кларка на столе лежал проект двухтонного агрегата, который при помощи гидравлики и электричества фокусировал все возрастающие объемы тепла и давления в центре сферы. Генералу сообщили, что прибор воссоздает условия, существующие на глубине 150 км под землей, где и формируются алмазы. Поместите осколок алмаза в земную кору, добавьте углерода, и алмаз станет расти. В 1954 году компания General Electric именно так и поступила, прессом в 400 тонн выдавив душу из углерода. Устройство General Electric позволяло вырабатывать недорогую алмазную пыль для промышленного применения, а в начале 1970-х компания научилась делать алмазы весом целых 2 карата. Но для этого требовалось столько усилий и электроэнергии, что получалось дороже, чем купить настоящий алмаз из шахты. Русские утверждали, что их конструкция недорога, потребляет не больше энергии, чем несколько ламп накаливания, и будет выдавать по трехкаратному камню раз в несколько дней. И что Генерал сможет получить такую машину всего за $57 тыс.

Три месяца спустя, зимой, Кларк вернулся в Москву. Его встретили телохранители и отвезли на склад под Москвой. В холодном, неотапливаемом помещении он наблюдал, как Николай Полушин — один из сибирских ученых, придумавших устройство — поднял верхнюю половинку сферы, достал небольшой керамический куб, ударил по нему молотком и передал Кларку небольшой алмаз. Все улыбались. В конце концов Генерал заказал три машины и попросил Семенова отправить их во Флориду.

Русские машины

Но существовали и две проблемы. Во‑первых, никто в США не умел работать с такими машинами. Эту проблему Кларк решил, переселив команду русских во Флориду. Во‑вторых, русские и сами-то не слишком хорошо овладели процессом. Работу машины пока нельзя было назвать надежной. Генералу и его новой компании Gemesis срочно была нужна помощь. Он обратился к иранцу по имени Реза Аббашайн, эксперту в области кристаллов, который возглавлял кафедру материаловедения в университете штата Флорида. Аббашайн согласился доработать машину. При помощи своих студентов он выкинул всю русскую автоматику и установил компьютерные системы. Коллектив заменил блок питания и методично отслеживал малейшие нюансы работы машины. Учитывая, что приходилось одновременно контролировать более 200 параметров, работа была нелегкой.

К 1999 году усилиями Аббашайна у Генерала были очень высококачественные камни. И Кларк полетел в Лондон, чтобы показать их группе потенциальных инвесторов. Вместо того чтобы просто высыпать груду алмазов перед ними на стол, он отправился к ювелиру в Хаттон Гарден, алмазный район британской столицы, и попросил, чтобы его камни оправили в кольца. Ювелир согласился, и Кларк вернулся в свой отель. Зазвонил телефон. На проводе была компания De Beers. По словам Кларка, чиновника из De Beers Джеймса Эванса Ломби предупредили о синтетических камнях менее чем через два часа после их прибытия к ювелиру. Ломби попросил о встрече с Генералом и приехал прямо в гостиницу, где и состоялась их беседа за чаем под звуки пианино и скрипичного дуэта.

Представители компании De Beers отказываются говорить об этой встрече — да и обо всем остальном, касающемся этой истории — но Кларк рассказывает, что просто выложил свои козыри. «Когда я сообщил, что собираюсь открыть фабрику по массовому производству таких камней, чиновник побелел. В De Beers знали о существовании технологии, но надеялись, что она так и останется в России и никто не сможет довести ее до ума. К концу разговора его руки тряслись», — вспоминает Кларк.

Но De Beers не сдавалась. В течение 2000 года картель запустил «Программу защиты камней», цель которой — информировать покупателей алмазов о том, что на рынке появились искусственные камни, и стал поставлять свои проверочные машины (модели DiamondSure и DiamondView) в крупнейшие в мире ювелирные лаборатории. Раньше такие лаборатории анализировали и сертифицировали цвет, прозрачность и размер камней. Теперь их просят также отличать рукодельные камни от ископаемых. Прибор DiamondSure просвечивает камень и анализирует показатель преломления. Если камень кажется подозрительным, его проверяют на приборе DiamondView, который выясняет внутреннюю структуру алмаза. Еще в 1996 году ученые De Beers писали, что идеально было бы иметь простой прибор, который смог бы отличать искусственные алмазы от натуральных. Но, к сожалению, в ближайшее время такой прибор создать не удастся, поскольку синтетические алмазы — все равно алмазы, как химически, так и физически.

Синтетика

Летом 2001 года Аббашайн сообщил Генералу, что готов, наконец, к массовой выработке алмазов. Оставалось принять одно, последнее решение. Каждая машина могла вырабатывать по одному желтому камню весом три карата каждые три дня (бесцветные камни вырабатываются дольше). Учитывая их редкость, удельная цена карата желтых алмазов настолько выше, что позволить себе такие камни могут только очень богатые люди. К тому же за последние годы цветные алмазы вошли в моду (в обручальном кольце у Дженнифер Лопез, например, был розовый алмаз). Кларк решил, что вызовет наибольший шум, принеся желтые камни на рынок американского «среднего класса». Он собирался конкурировать как по цене (продавая свои камни на 10%-50% дешевле), так и по стилю. И, в случае победы на рынке желтых камней, перейти на рынок бесцветных. Но алмазная индустрия нанесла ответный удар. В начале 2002 года De Beers начала поставки улучшенных моделей DiamondSure. Тем временем лоббисты добились требования Федеральной торговой комиссии США, чтобы Gemesis маркировала свои камни как синтетические.

Gemesis строит свой маркетинг на утверждении, что синтетические камни лучше натуральных. Генерал предлагает называть свои алмазы «культивированными». Это намеренная отсылка к бешено популярному (и гораздо более ценному, чем натуральный) искусственному жемчугу.

«Если вы предложите женщине выбрать между 2-каратным и 1-каратным алмазом, что она, по‑вашему, выберет при прочих равных? — вопрошает Генерал. — Важно ли ей, какие из них натуральные? Будут ли к ней подходить с вопросами о натуральности камней в ее украшениях?» «Да ни за что!» — отвечает он сам себе. С ним не согласен Джеф Ван Ройен, который представляет Высший алмазный совет Бельгии: «Если люди по‑настоящему любят друг друга, они дарят настоящие камни. Не может быть символом вечной любви нечто, созданное на прошлой неделе».

Это и есть официальная линия De Beers. Ван Ройену не нравится аналогия с искусственным жемчугом, скорее уж речь может идти о синтетических изумрудах, которые появились в огромных количествах в середине 1970-х. Вначале цена была очень высокой, но ювелирные лаборатории быстро поняли, что отличить синтетику можно с помощью обычного микроскопа. Цена упала, и теперь они стоят не более 3% от натуральных.

Новая угроза

Ван Ройен рассказал мне и о другой угрозе. Ходят слухи о новой методике выращивания алмазов ювелирного качества. Процесс представляет собой химическое осаждение паров (chemical vapor deposition — CVD) и уже более десятилетия используется для покрытия больших поверхностей микроскопическими кристаллами алмазов. Эта технология основана на превращении углерода в плазму, которая затем осаждается на подложку в виде алмазов. Ранее существовала только одна проблема — никто не мог научиться выращивать таким образом цельный алмаз. «По крайней мере, до сих пор было так», — добавляет Ван Ройен. Компания Apollo Diamond, темная лошадка из Бостона, по слухам, научилась. Если это правда — индустрии и правда грозит крах, так как алмазы, созданные по технологии CVD, можно выращивать огромными брикетами, а после резки и полировки они будут неотличимы от натуральных камней. «Но таких алмазов никто в Антверпене не видел, так что мы даже не знаем, существуют ли они на самом деле», — говорит Ван Ройен. Тогда я достаю из кармана коробочку от 35-мм фотопленки и кладу ее на стол. Внутри, на подушечках, лежат два маленьких алмаза. «Поверьте мне, они существуют», — сообщаю я ученому.

Темная лошадка

За три дня до поездки в Бельгию я слетал в Бостон и встретился с Бриантом Линаресом, президентом компании Apollo Diamond. После 45-ми-нутной беседы в машине он, видимо, решил, что со мной все в порядке и я не шпион De Beers. Мы вошли в помещение, и я увидел человека, с головы до ног одетого в герметичный костюм, хорошо известный благодаря рекламе Intel. «Добро пожаловать в компанию Apollo Diamond», — подтолкнул меня Линарес и быстро закрыл дверь. Он выдал мне герметичный костюм, в том числе бутсы, очки и шапочку для волос. В комнате были трое в похожей одежде. Они стояли вокруг цилиндрического аппарата, похожего на промышленный кофейник, оборудованного засовом на иллюминаторе. Из окошка светило сверхъестественным зеленым. Я заглянул через стекло. Там, за мерцающим зеленым облаком, росли четыре алмаза. «К этому я шел очень долго», — рассказал мне один из людей, стоявших возле машины. Это Роберт Линарес, отец Брианта. В 1980-х он был известным исследователем в области сложных полупроводников. Его компания, Spectrum Technology, известна благодаря вводу в производство технологии использования пластин арсенида галлия в качестве полупроводниковой подложки, заменившей кремний и позволившей сотовым телефонам стать меньше и использовать большую полосу частот. Линарес-старший продал свою компанию корпорации PacifiCorp и в 1985 году исчез из мира полупроводников. Оказывается, на свои деньги он построил секретную лабораторию для исследования алмазов. «Я понимал, что рано или поздно алмазы станут совершенными полупроводниками, хоть никто в это и не верил. После продажи компании я мог делать что хотел, и я потратил 15 лет на собственные исследования», — рассказал Линарес.

Чтобы вырастить монокристалл алмаза методом CVD, сначала нужно угадать точное сочетание температуры, плотности газа и давления, «ту самую точку», в которой начинается создание единого кристалла. В противном случае на вас прольется дождь из несчетного количества мелких алмазов. Найти «ту самую точку» примерно так же непросто, как найти конкретную песчинку на берегу. Из миллионов комбинаций подходит только одна. И в 1996 году Линарес ее нашел. А в июне 2003 года он, наконец, получил патент на свой процесс и уже вырабатывает безупречные алмазы, планируя вскоре начать продажу камней на ювелирном рынке. Но это — только первый шаг. На деньги от продажи камней Роберт и Бриант Линаресы рассчитывают заняться разработкой алмазных полупроводников. Неудивительно, что алмазная индустрия не в восторге от их планов, в чем убедился Линарес-младший пять лет назад, посетив конференцию в Праге. Во время перерыва к Линаресу подошел человек и посоветовал быть осторожнее. «Он сказал, что исследования моего отца — верный путь получить пулю в голову», — вспоминает Линарес.

Пять долларов за карат

Алмазная индустрия, вообще-то, гораздо больше боится камней, созданных по технологии CVD, чем камней от Gemesis, хоть последняя и представляет непосредственную угрозу. По идее, метод CVD даст чрезвычайно чистый кристалл. Алмазы от Gemesis растут в металлическом расплаве, и небольшие частички металлов попадают в решетку алмаза при его росте. Алмазы CVD, напротив, осаждаются, образуя почти стопроцентно чистый кристалл, и поэтому неотличимы от натуральных. Но наибольший потенциал технологии CVD лежит в использовании их в компьютерах. Если алмаз станет применим в полупроводниках, потребуется метод недорогого выращивания камней в больших пластинах. (Кремниевые пластины, которые использует Intel, например, имеют диаметр около 30 см). А размер CVD ограничен только размером зерна, которое заложат в машину. Процесс начинается с квадратной пластины. Камень растет в форме призмы, где верхняя часть слегка шире основания. За годы, прошедшие с момента обнаружения «той самой точки», компания Apollo училась выращивать алмазы все большего размера, отрезая верхушку от одного и используя ее как базу для другого алмаза. На сегодня компания способна вырабатывать 10-мм пластины, но за 5 лет планирует достичь 10 см. Карат стоит около $5.

Но вернемся в Высший алмазный совет. Я вытряхиваю камни от Apollo на стол. Ван Ройен неуверенно поднимает один из них длинным пинцетом и кладет под микроскоп. «Невероятно! Можно рассмотреть?» — спрашивает он. Я соглашаюсь оставить ему камни на ночь. Утром Ван Ройен выглядит уставшим. Он признает, что почти всю ночь изучал камни. «Думаю, что отличить их все же смогу: они слишком идеальны для натуральных алмазов. В природе все имеет изъяны. А у этого камня их практически нет», — резюмирует ученый. И добавляет на прощание: «В ваших руках нечто, чего нет больше ни у кого в Антверпене. Если хотите понять, насколько на самом деле важны эти камни, поговорите с Джимом Батлером из ВМФ США».

Алмазный Pentium

Джим Батлер возглавляет группу при ВМФ, которая занимается исследованием алмазов. Батлер изучал процесс CVD на протяжении 16 лет и повидал немало разочарований за этот срок. Но сегодня он — оптимист. Существовали три проблемы на пути к алмазному процессору. И похоже, все три готовы пасть. Во‑первых, алмазы считаются бешено дорогими из-за политики De Beers, которая не отпускает цены на рынке. Синтетические алмазы решат эту проблему. Во‑вторых, не было надежного источника больших и чистых камней. На ископаемые алмазы рассчитывать нельзя, так как невозможно обеспечить одинаковые электрические характеристики камней. Алмазы от Apollo решают и эту задачу. В-третьих, была проблема, над которой ломали головы материаловеды всего мира. Чтобы сделать микросхему, нужны полупроводники p- и n-типа. Алмаз — естественный изолятор, он не проводит электрический ток. Gemesis и Apollo смогли ввести в кристаллическую решетку алмаза бор, который создает нужный тип проводимости p-типа. Но до сих пор никто не смог создать в алмазе проводимость n-типа. При встрече со мной в Вашингтоне Батлер едва мог сдержать ликование. Он сообщил мне, что совершен прорыв — в июне 2003 года, совместно с учеными из Израиля и Франции, Батлер объявил о том, что найден способ инвертировать природную проводимость бора и создавать легированные бором алмазы n-типа. «Таким образом, мы получили p-n-пару. Другими словами, работающий полупроводник. На горизонте уже алмазный Pentium!» — радуется Батлер.

Однако ученого огорчают настроения в компьютерной индустрии США. Если не поторопиться, считает он, японцы и европейцы вырвутся вперед. И действительно, в разговорах с главными шишками компании Intel выяснилось, что они даже не знали о последних достижениях в области алмазных полупроводников. Кришнамурти Сумианат, один из боссов компании Intel, говорит, что освоение нового материала занимает около 10 лет, а в кремний вложено столько, что отказываться от него компания пока не намерена.

Но в один прекрасный день выхода у изготовителей микросхем не останется. Бернард Вунеш, профессор материаловедения в Массачусетсском технологическом институте, прямо говорит: «Если закон Мура не падет, микросхемы будут становиться все горячее и горячее. И кремний в какой-то момент просто потечет. Алмаз — вот решение проблемы».

Искусственные бриллианты – прекрасная альтернатива для тех, кто не может позволить себе натуральные камни, при этом за гораздо меньшую цену вы получаете великолепное украшение, изготовленное из экологически чистого материала. На сегодняшний день различают два основных вида искусственных бриллиантов - синтетические камни и так называемые, заменители алмазов.

Процесс создания синтетического алмаза был разработан в 1892 году французским химиком Анри Муассаном (Henri Moissan). Крошечные частички синтетического алмаза образовывались при нагревании угля или углеродного материала в чугунном тигле до экстремально высоких температур (4000¼ C). На сегодняшний день в изготовлении искусственных бриллиантов используют два основных метода: воздействие на материал высоким давлением при нагреве до высоких температур (HTHP) и метод химического осаждения из газовой фазы (CVD).

Температура плюс давление

Данная технология известна также под названиями HTHP и «GEPOL». В данном случае используется специальная установка в виде тетраэдрического пресса или шестиступенчатого кубического пресса высокого давления. Алмазное «семечко» помещают в рабочую камеру, которая находится внутри пресса, и подвергают воздействию высокой температуры и высокого давления, при этом создаются условия, максимально приближенные к естественным характеристикам процесса образования алмазов в природе. В отличие от натуральных алмазов, температурно-прессовой метод позволяет «вырастить» искусственный алмаз за семь-десять дней. Нередко дополнительная обработка синтетических алмазов температурой и давлением применяется для улучшения характеристик камня и достижения максимальной схожести с натуральным аналогом.


Метод химического осаждения из газовой фазы (CVD)

Разработанный в 80-х годах прошлого века метод предполагает условия выращивания кристалла при более низком давлении. В рабочую камеру помещается частица исходного материала, которая затем подвергается комбинированному воздействию температуры и давления, в то время как соединение выпаренной углеродной плазмы и водорода наслаивается на субстрат. Углеродные газы заряжаются микроволновой энергией и притягиваются к исходному материалу. При использовании метода химического газофазного осаждения формирование синтетического алмаза занимает несколько дней.


Выращенные в лабораторных условиях алмазы не уступают натуральным в твёрдости, кливаже (спайности), коэффициенте преломления, световой дисперсии, удельном весе и сиянии. Также как и натуральные алмазы, синтетические варианты могут содержать небольшие включения.

Цветовая гамма и оптические характеристики искусственных бриллиантов

В отличие от натуральных бриллиантов, которые в большинстве своем не имеют цвета, синтетические бриллианты обладают легким желтоватым оттенком и виной тому включения азота, которые рассеиваются в структуре кристаллической решетки во время фазы роста кристалла. Включения азота поглощают голубой спектр светового луча, в результате чего кристалл приобретает желтоватый оттенок.

Заменители бриллиантов

Заменители бриллиантов широко используются в ювелирной промышленности с 1970-х годов, вначале бриллианты заменяли кубически стабилизированным цирконом (фианитом), позже появились такие заменители как муассанит и Nexus. Более сотни лет назад для имитации бриллиантов использовали хрусталь, циркон и белый сапфир, особенно популярны эти камни были в изготовлении перстней в викторианском стиле.

Заменитель бриллиантов Nexus представляет собой соединение углерода с другими веществами. Такие заменители отличаются прочностью и твердостью и сопровождаются утроенной пожизненной гарантией прочности. Материалом для изготовления фианитов служит диоксид циркония. Среди всех заменителей бриллиантов фианит считается наименее прочным и, соответственно, одним из самых дешевых.

Муассанит, который синтезируют из карбида кремния, славится своим блеском и сиянием. Высокая прочность этого заменителя бриллианта, безусловно, отразилась и на его цене, из всех заменителей, муассанит самый дорогой, к тому же этот кристалл обладает определенными внешними особенностями, которые позволяют отличить его от натурального бриллианта.

При сравнении искусственных и натуральных бриллиантов разница, которая видна невооруженным глазом, – это стоимость кристаллов, однако стоит отметить, что белые (бесцветные) синтетические бриллианты нередко не уступают в цене натуральным бесцветным алмазам. Еще одно отличие: в натуральных бриллиантах присутствуют включения и неоднородность, в то время как синтетические варианты практически безупречны.

Сравнительная характеристика

Если вы решили приобрести украшение с искусственным бриллиантом, вам определенно удастся сэкономить кругленькую сумму, но если вы хотите максимально снизить затраты, тогда обратите внимание на изделие с заменителями бриллиантов, они стоят намного дешевле, чем вещицы с искусственными алмазами.

Заменители уступают натуральному бриллианту в прочности и твердости, но в плане сияния и блеска могут составить достойную конкуренцию натуральным кристаллам. К тому же заменители совершенно чисты и лишены каких бы то ни было включений. Муассанит обладает наиболее ярким блеском и интенсивностью бликования, что в некотором роде создает нежелательный для некоторых покупателей эффект «дискотечного шара», фианиты не обладают таким сиянием, как бриллианты, но лучше отбрасывают блики.

На сегодняшний день существует множество различных технологий получения кристаллов алмаза , для самых разнообразных целей применения, различной величины, окраски и прочности.

Алмаз есть не что иное, как чистый углерод с особой кристаллической решеткой.

Другим представителем чистого углерода на Земле является древесный уголь, графит.

Характеристика углерода:

    Атомный вес углерода 12.011;

    Порядковый номер в периодической системе Менделеева 6;

    Количество электронов 6;

    основная валентность 4;

    При нормальном атмосферном давлении в жидкость не переходит;

    При нагревании при нормальном давлении до температуры 3670 0 С, углерод;
    переходит в газ, минуя жидкое состояние.


Характеристика алмаза:

    Плотность 3.5 гр. см 2 ;

    Преломление света 2,42 (Стекло 1, 8);

    Твердость 2 000 000 усл. ед. (Сталь 30 000, стекло 40 000 относительно талька у которого твердость =1);

    Температура перехода в графит в открытом воздухе - 1200 0 С;

    Температура возгорания в среде чистого кислорода 740 0 С;

    Единицы измерения алмазов - карат. Один карат равен 0.2 грамма. Алмаз, размерами 1 x 1 см = 17,5 каратов;

    В алмазе каждый атом углерода соединен с 4 другими атомами углерода и расстояние между ними строго одинаково = 1,54 ангстрем. Расположены атомы углерода в алмазе по углам правильного тетраэдра атомной кристаллической решетки.

Температура испарения углерода составляет 3670 0 С (диаграмма 1) критическая точка (Z) (температура 3670 0 С. давление -120 атм.) называется первой точкой тройного состояния.

В этой точке возможны переходы углерода в твердое, газообразное или жидкое состояние.

При повышении давления и температуры, получаем вторую тройную точку (D), в которой возможны состояние углерода в виде кристаллов (алмаз ), в виде жидкости и аморфном состоянии (графит).

Наилучший результат получения алмазов при переходе из жидкого состояния углерода в кристаллическое - снижение температуры, но по возможности, оставляя очень высокое давление. Огромное значение в технологии производства алмазов играют временные характеристики процесса.

Как было ранее отмечено, углерода в жидком состоянии при нормальных условиях (760 мм рт. столба и 20 0 С) не существует. Углерод в жидком состоянии возможен и существует только при давлении свыше 120 атм. и 3740 0 С. (диаграмма 1 ).

Из физических свойств алмаза следует отметить температуру возгорания в среде кислорода которая равна 670 0 С, в основном алмаз сгорает без остатка.

При нагревании алмаза свыше 1200 0 С без воздуха начинается процесс графитизации алмаза , это и происходит при неправильной технологии процесса производства алмазов .

Способы получения искусственных кристаллов алмаза

Первым способом получения искусственных алмазов является метод приближенный к естественному возникновению природных алмазов , это сочетание очень высокого давления и высокой температуры.

Первый способ самый надежный, но и самый технологически сложный

Ниже приводится одна из лабораторных установок по получению кристаллов алмаза максимально приближенной к предполагаемой природной схеме возникновения алмазов в земной толще - мощное давление, высокая температура.

Приложение 1.

Лабораторная установка по получению искусственных алмазов представляет собой пресс высокого давления. В корпус пресса вставляется рабочий цилиндр.

В этом цилиндре предусмотрены сверления для циркуляции хладагента, и отверстия для подачи воды под давлением. В этот корпус вставляется камера, выполненная из карбида тантала в которой размещают заготовку - графит который должен превратится в алмаз .

Предусмотрен подвод медных шин для подачи электрического тока к рабочей камере.

Технология получения алмаза происходит в несколько этапов.

Вначале, после установки цилиндра в пресс высокого давления, подается вода и происходит процесс предварительного сжатия графита давлением воды, примерно до 2-3 тысячи атмосфер. Вторым этапом подается хладоагент и замораживается вода до температуры минус 12 градусов Цельсия.

При этом происходит дополнительное сжатие графита до 20 тысяч атмосфер за счет расширения льда.

На следующем этапе подается мощный импульс электрического тока продолжительностью 0.3 секунды.

На заключительном этапе размораживают лед и вынимают алмазы .

Полученные подобным образом алмазы в основном грязного цвета, имеют пористую структуру, форма кристаллов тетраэдрическая.

В большинстве своем прочнее естественных алмазов и в основном служат для технических целей.

Второй способ

Вторым способом, возможно технологически простым, но сложным по применяемой аппаратуре является способ наращивания кристаллов алмаза в среде метана (СН 4).

При этом методе кристалл алмаза нагревают до температуры 1111 0 С. и обдувают метаном. Давление в рабочей камере может быть небольшим, порядка 0,1 технической атмосферы. Это давление в основном служит для препятствия проникновения в камеру атмосферного кислорода.

Необходимо помнить, что начиная с 1200 0 С алмаз начинает свой переход в состояние графита (без доступа кмслорода).

Процесс наращивания кристалла алмаза происходит на раскаленной поверхности алмаза путем добавления атомов углерода в существующую кристаллическую решетку затравочного кристалла алмаза. Количество выделенного углерода (алмаза) 0.2 % от поверхности затравочного кристалла за один час.

Форма кристаллов получаемая подобным способом кубическая, в отличии от природной тетраэдрической, цвет черный, прочность сопоставима с естественными алмазами. По своей сути это чистый карбид, но называется алмазом в связи с очень высокой твердостью полученных кристаллов, и в связи с тем, что в качестве затравочного кристалла используют настоящие алмазы.

Третьим способом получения алмазов является метод взрыва

При этом способе получают очень мелкую алмазную пыль для производства заточных камней, абразивов. Применяют или взрыв «обычного» взрывчатого вещества, или взрыв проволоки большим импульсом тока.

Для получения плотной детонационной волны необходима мембрана которая рвется со скоростью звука в том металле из которого изготовлена мембрана (для железа это - 5000 м/сек.).

«Подогретый» графит, находящийся на так называемой "сковородке" в момент прохождения детонационной волны превращается в кристаллы алмаза .

Этот способ дает выход продукции намного больше в процентном отношении от количества графита, чем способ высокого давления.

Кристаллы получаются бесцветные, чистейшей воды, прозрачные, но очень мелкие (30 - 50 мкрн.). Форма кристаллов тетраэдрическая прочность сопоставима с природными алмазами .

Сущность данного способа получения алмазов , методом взрыва, заключается в том, что при подрыве взрывчатого вещества в замкнутом пространстве, детонационная волна при ударе с препятствием на пограничном слое, ударная волна - препятствие, создает одновременно и высокое давление и высокую температуру. Давление может достигать свыше 300 000 атм, температура десятки тысяч градусов. К сожалению (или к счастью) все это по времени укладывается в миллионные доли секунды и размеры (толщина) детонационной волны не превышает 10-30 микрон.

В момент разрыва мембраны ударная волна приобретает «плотность» и своего рода такое качество как - гомогенность.

Некоторые кристаллики алмазов получаемые подобным способом могут иметь в диаметре до 50 мк. Большое значение в данном способе имеет положка на которой расположен подогретый графит и толщина рабочего слоя.

Интересны эксперименты по «вторичному» прессованию полученных алмазов тем же способом взрыва, по принципу порошковой металлургии. В данном случае, в алмазном производстве , можно получить кристаллы различного размера и веса из алмазного порошка. В подавляющем большинстве кристаллы мутного цвета. Отмечается хрупкость полученных вторичных кристаллов алмаза . Прочность намного ниже естественных, при обработки возможны «сюрпризы». В данном случае жадность может сгубить идею в самом прямом смысле этого понимания. Толщину графита не рекомендуется превышать 60 микрон .

В четвертом способе получения алмазов применяют катализаторы

Применение катализаторов в алмазном производстве значительно помогает сократить величину давления и температуру. Кристаллы алмаза образуются в разделительном слое между раскаленным графитом и пленкой металла катализатора. При соответствующих подборах технологий можно получать до 50 граммов технических алмазов за один технологический цикл.

Как видим, из диаграммы 3 , приложение 3

Возникающие на границе перехода графит - катализатор, кристаллы алмаза продолжают свой рост при неизменных условий в рабочей камере до тех пор пока пленка из металла катализатора продолжает соединяться с графитом.
Приложение 3

Рост кристаллов продолжается и в самом легирующем металле за счет проникновения атомов углерода через тонкую пленку металла.

Искусственные алмазы полученные подобным способом представляют собой очень мелкие кристаллы (30 -200 микрон ).

Полученные при низких температурах кристаллы алмазов имеют квадратную форму строения кристаллов, черного цвета, по прочности равны или превосходят естественные.

Кристаллы полученные при высоких температурах и больших давлениях имеют октаэдрическую форму, цвет различен - желтый, синий, зеленый, белый, прозрачные и непрозрачные кристаллы. По прочности равны или превосходят естественные алмазы. Влияние катализаторов на цвет очевидно. Примесь никеля в кристаллах алмаза придает алмазу зеленоватые тона, присадки бериллия придают алмазам синие тона расцветки.

Следует отметить, что по твердости нет в мире элемента тверже алмаза , хотя по другим свойствам он может уступать некоторым искусственным элементам. В таблице приведены элементы которые могут дать более полное представление о некоторых свойствах алмаза в сравнении c другими земными элементами.